A DIFFERENT ANGLE ON QUANTUM UNCERTAINTY

[THE MEASURE ANGLE]

Ivan Ηοrváth

Department of Anesthesiology and Department of Physics, University of Kentucky

w Robert Mendris

Department of Mathematics, Shawnee State University

$|\psi\rangle$, $\{|i\rangle\}$: How many $|i\rangle$ in $|\psi\rangle$?

- 2/3 I.H. & R. Mendris, arXiv:1807.03995
- 1/3 not published

CANONICAL CONTEXT : spinless lattice Schrödinger particle wrt position basis

 $|\psi\rangle \rightarrow {\psi_i} | i = 1, ..., N$ *How many positions (N) is particle simultaneously in?*

Quantum mechanics: $|\psi\rangle \rightarrow P = (p_1, p_2, \dots p_N)$ $p_i = |\langle i | \psi \rangle|^2 = \psi_i^* \psi_i$

What is $\mathcal{N}[\ket{\psi}, \{\ket{i}\}] = \mathcal{N}[P]$????

(i) ill-posed question in QM (ii) well-posed question in QM (how?) Options: ?

STRATEGY:

- (1) Axiomatically define the set $\mathfrak N$ of all $\mathfrak N = \mathfrak N[P]$ assigning effective number of states
- (2) Study the content and structure of \mathfrak{N}

Important convenience :

$$
P = (p_1, \ldots, p_N) \longrightarrow W \equiv NP = (w_1, \ldots, w_N) \quad \text{[counting vector]}
$$

$$
\mathcal{N} = \mathcal{N}[W]
$$
 : $W \in \mathcal{W} \equiv \{ (w_1, ..., w_N) | w_i \ge 0, \sum_{i=1}^{N} w_i = N, N \in \mathbb{N} \}$

Participation Number :

Bell & Dean, 1970

$$
\frac{1}{\mathcal{N}_p[W]} = \frac{1}{N^2} \sum_{i=1}^N w_i^2
$$

used profusely in localization studies to this day

 $N_p \notin \mathfrak{N}$ participation number doesn't count

OLD KEY INGREDIENT : MONOTONICITY

enhancing the cumulation of probability cannot increase the effective number

(M-)
$$
\mathcal{N}(\ldots w_i - \epsilon \ldots w_j + \epsilon \ldots) \leq \mathcal{N}(\ldots w_i \ldots w_j \ldots) , w_i \leq w_j
$$

monotonicity wrt cumulation

NEW KEY INGREDIENT: ADDITIVITY

$$
N~\to~\mathcal{N}[W]
$$

Effective number of states has to be measure-like!

$$
\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2) \qquad S_1 \cap S_2 = \emptyset
$$

$$
N_{12} = N_1 + N_2
$$

$$
\mathcal{N}[W_{12}] = \mathcal{N}[W_1] + \mathcal{N}[W_2]
$$

Note:
$$
W_1 \in W_{N_1}
$$
, $W_2 \in W_{N_2} \Rightarrow W_1 \boxplus W_2 \in W_{N_1+N_2}$
\n $(a_1, ..., a_N) \boxplus (b_1, ..., b_M) \equiv (a_1, ..., a_N, b_1, ..., b_M)$

 $N[W_1 \boxplus W_2, N_1 + N_2] = N[W_1, N_1] + N[W_2, N_2]$, $\forall W_1, W_2, N_1, N_2$

EFFECTIVE NUMBERS

$$
(A) \qquad \mathcal{N}[W_1 \boxplus W_2] = \mathcal{N}[W_1] + \mathcal{N}[W_2]
$$

(S)
$$
\mathcal{N}(\ldots w_i \ldots w_j \ldots) = \mathcal{N}(\ldots w_j \ldots w_i \ldots)
$$

$$
(B1) \qquad \mathcal{N}(1,1,\ldots,1) \,=\, N
$$

$$
(B2) \qquad \mathcal{N}(N,0,\ldots,0) = 1
$$

$$
(B) \qquad 1 \le N[W] \le N
$$

(C) $N[W]$ is continuous on W

$$
(M-) \t N(\dots w_i - \epsilon \dots w_j + \epsilon \dots) \le N(\dots w_i \dots w_j \dots) , w_i \le w_j
$$

monotonicity wrt cumulation

 \mathfrak{N} : set of functions satisfying (A), (S), (B2), (C), (M-) $[$ (B1) and (B) follow $]$

 $\mathcal{N}_p \notin \mathfrak{N}$ (not additive)

THE CONSISTENCY GAME

number of objects number of objects with weights

natural numbers effective numbers

Theorem

There are infinitely many elements in \mathfrak{N} *and there exists* $\mathcal{N}_\star \in \mathfrak{N}$ *such that*

 $\mathcal{N}_{\star}[W] \leq \mathcal{N}[W] \leq \mathcal{N}_{+}[W]$ $\forall \mathcal{N} \in \mathfrak{N}$, $\forall W \in \mathcal{W}$ (0) $\mathcal{N}_{\star}[W] \leq \mathcal{N}_{+}[W]$ \implies $\{ \mathcal{N}[W] \mid \mathcal{N} \in \mathfrak{N} \} \supseteq [\alpha, \beta)$

where W in (b) is arbitrary but fixed and $\alpha = \mathcal{N}_{\star}[W]$, $\beta = \mathcal{N}_{+}[W]$ *.*

$$
\mathcal{N}_{\star}[W] = \sum_{i=1}^{N} \mathfrak{n}_{\star}(w_i) \qquad \mathfrak{n}_{\star}(w) \equiv \min\{w, 1\}
$$

$$
\mathcal{N}_+[W] = \sum_{i=1}^N \mathfrak{n}_+(w_i) \hspace{1cm} \mathfrak{n}_+(w) \, \equiv \, \left\{ \begin{array}{ll} 0 \; , & w=0 \\ 1 \; , & w>0 \end{array} \right. \hspace{1cm} \mathcal{N}_+ \notin \mathfrak{N}
$$

- ❖ THERE IS A "MINIMAL AMOUNT" OF OBJECTS WITH PROBABILITY WEIGHTS [least element]
- ❖ CONSISTENT EFF. AMOUNTS UP TO THE NUMBER OF NON-ZERO WEIGHTS [no structure at the top: \mathcal{N}_\star represents the actual content of the concept]
- ❖ CONTINUUM OF EFFECTIVE COUNTING SCHEMES PERFECTLY NATURAL

WE NOW KNOW HOW TO COUNT WITH PROBABILITIES!

How did you say it works?

Example: Buying one hat, 6 choices, assign preferences (probabilities)

$$
P = (0.01, 0.02, 0.10, 0.15, 0.30, 0.42)
$$

\n
$$
W = (0.06, 0.12, 0.60, 0.90, 1.80, 2.52)
$$
 [counting weights]
\n
$$
N \quad [W]
$$

 $N_{\star}[W] = 0.06 + 0.12 + 0.60 + 0.90 + 1.00 + 1.00 = 3.68$

Question: How many hats are you effectively choosing from?

Answer: About 2.5

Reply: You are a liar!

This application a basis for the notion of effective choices in probability theory.

 $|\psi\rangle$, $\{|i\rangle\}$: How many $|i\rangle$ in $|\psi\rangle$?

- (i) ill-posed question in QM
- (ii) well-posed question in QM (how?) \checkmark

Answer:

$$
\mathcal{N}_{\star}[\ket{\psi}, \{ \ket{i} \}] = \mathcal{N}_{\star}[W] \qquad W = (w_1, \dots, w_N) \qquad w_i = N \mid \langle i \mid \psi \rangle \mid^2
$$

$$
\mathcal{N}_{\star}[W] = \sum_{i=1}^{N} \mathfrak{n}_{\star}(w_i) \qquad \mathfrak{n}_{\star}(w) \equiv \min\{w, 1\}
$$

Quantum Uncertainty

Canonical experiment: $\hat{O} \longleftrightarrow \{ (\ket{i}, O_i) | i = 1, 2, ..., N \}$ non-degenerate

$$
|\psi\rangle \quad \xrightarrow{\text{measure }\hat{O}} \quad \{ (|i_{\ell}\rangle, O_{i_{\ell}}) \mid \ell = 1, 2, \dots \}
$$

uncertainty of $|\psi\rangle$ wrt \hat{O} = indeterminacy encoded by $\{(|i_{\ell}\rangle, O_{i_{\ell}})\}$

distance on the spectrum abundance of distinct outcomes

metric uncertainty measure uncertainty

 ρ -uncertainty μ -uncertainty

 $\Delta = \Delta [\psi, \hat{O}]$
 $\mathcal{N} = \mathcal{N} [\psi, \{ |i \rangle \}]$

[e.g. standard deviation] [complete theory in arXiv:1807.03995]

MEASURE UNCERTAINTY PRINCIPLE

Set $\mathfrak N$ of effective number functions $\mathfrak N$ exhausts all quantum μ -uncertainties

$$
\mathcal{N}[\ket{\psi},\{\ket{i}\}] = \mathcal{N}[W] \quad , \quad W = (w_1,\ldots,w_N) \quad , \quad w_i = N \; |\langle i|\psi\rangle|^2
$$

 $[U_0]$ *The* μ -uncertainty of $|\psi\rangle$ with respect to $\{ |i\rangle \}$ is at least $N_{\star}[W]$ states.

ECONOMICAL EXPRESSION OF FUNDAMENTAL DIFFERENCE BETWEEN QUANTUM AND CLASSICAL

μ – UNCERTAINTY OF SCHRÖDINGER PARTICLE IN \mathbb{R}^D

When regularizations removed/continuous spectra: measure uncertainties are effective volumes

Example: Schrödinger particle in bounded region *A* of \mathbb{R}^D described by wave-function ψ

$$
\mathcal{V}_{\star}[\psi] = \int_{A} \nu_{\star}(x) d^{D}x \qquad \qquad \nu_{\star}(x) = \min \{ V\psi^{\star}(x)\psi(x), 1 \}
$$

QUANTUM UNCERTAINTY EXPRESSED AS A GENERALIZATION OF THE JORDAN CONTENT!

Formulation entirely general in terms of the setting (system, Hilbert space)

TAKE-AWAYS

- ◆ IDENTITY-COUNTING PROBLEMS ARE WELL-DEFINED AND SOLVED IN QUANTUM MECHANICS [I.H. & R.M. arXiv:1807.03995]
- ❖ BY VIRTUE OF EXTENDING THE CLASSICAL NOTION OF MEASURE VIA PROBABILITY
	- counting \rightarrow effective counting , counting measure \rightarrow diversity measure,

Jordan content \rightarrow effective Jordan content

◆ CONSEQUENTLY MUCH MORE BASIC THAN "QUANTUM" SETTING

Effective counting arises classically virtually everywhere!

- ❖ FRUITFUL EXTENSION OF QUANTUM UNCERTAINTY INTO MEASURE UNCERTAINTY COMPLETELY UNDER CONTROL UNLIKE METRIC UNCERTAINTY
- ◆ QUALITATIVELY NEW TYPE OF UNCERTAINTY PRINCIPLE

