ENTANGLEMENT AND THE INFRARED

Gordon W. Semenoff

University of British Columbia

ICNFP 2018, Kolymbari, Crete

ICNFP 2018

Prologue:

- The infrared sectors of quantum electrodynamics and perturbative quantum gravity have recently been of interest to possible resolutions of the black hole information paradox.
- *• ∃* New large gauge transformations, new conserved charges and super-selection rules.
- All of this brings up fundamental issues in quantum electrodynamics and perturbative quantum gravity, even without black holes.
- *•* We will take a simple information theoretic look at the infrared in QED. Perturbative quantum gravity is similar (and perhaps even more interesting) but not as well-defined a quantum field theory since it is not renormalizable.

For example: Moeller Scattering

The amplitude for Moeller scattering, to 1% accuracy, is given by the tree-level Feynman diagram:

Radiative corrections to Moeller scattering:

However, to get 0*.*01% **accuracy, there is a subtlety due to infrared divergences:**

Infrared Catastrophe

Any scattering of charged particles is accompanied by the emission of an infinite number of soft photons

¯ F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937) D. R. Yennie, S. C. Frautschi, H. Suura, Ann. Phys. 13, 379 (1961) **soft photon theorems** S. Weinberg, Phys. Rev. 140, B516 (1965) **soft graviton theorem**

Information loss?

Soft photons which escape detection have polarizations and directions of propagation.

How much information do they carry away with them?

G.Grignani,GWS, Phys. Lett. B 772 (2017) 699. D.Carney,L.Chaurette,D.Neuenfeld, GWS, Phys.Rev.Lett.119(2017)no.18,180502 Phys.Rev. D97 (2018) no.2, 025007 arXiv:1803.02370

Information loss due to entanglement:

Composite system of two qubits: $| >_1 \otimes | >_2$

If subsystem *| >*² **becomes inaccessible, how much information about** $| > 1$ **do we lose?**

Unentangled state: *|ψ >*= $\sqrt{2}$ *α*| ↑ > 1 + $\sqrt{1 - |\alpha|^2}$ | ↓ > 1] *⊗ | ↑>*²

Entangled state: *|ψ >*= $\overline{\int}$ *α| ↑>*¹ *⊗| ↑>*² + √ 1 *− |α|* ²*| ↓>*¹ *⊗| ↓>*²]

Reduced density matrix: $\rho = \text{Tr}_2 |\psi\rangle \langle \psi|$

Unentangled state: *→* $\rho =$ $\sqrt{2}$ α | ↑ > 1 + $\sqrt{1 - |\alpha|^2}$ | ↓ > 1 $\Big|$ 1 < ↑ | α $* +_1 < \uparrow | \sqrt{1 - |\alpha|^2}$] **Entangled state:** *→* $\rho = |\alpha|^2 |\uparrow>1 < |\uparrow>1$ + $(1 - |\alpha|^2)| \downarrow>1 < |\downarrow|$ $\sqrt{ }$ \perp $|\alpha|^2$ 0 0 $1 - |\alpha|^2$ $\overline{}$ $\overline{}$

So what?
\nUnentangled state:
$$
\rightarrow
$$

\n
$$
\rho = \left[\alpha | \uparrow\rangle_1 + \sqrt{1 - |\alpha|^2} | \downarrow\rangle_1 \right] \left[\alpha | \uparrow\rangle_1 + \sqrt{1 - |\alpha|^2} | \downarrow\rangle_1 \right]
$$
\n
$$
\rho = \begin{bmatrix} |\alpha|^2 & \alpha \sqrt{1 - |\alpha|^2} \\ \alpha^* \sqrt{1 - |\alpha|^2} & 1 - |\alpha|^2 \end{bmatrix}
$$

Entangled state: *→*

$$
\rho = |\alpha|^2 |\uparrow\rangle_1 < \uparrow | + (1 - |\alpha|^2)| \downarrow\rangle_1 < \downarrow | = \begin{bmatrix} |\alpha|^2 & 0 \\ 0 & 1 - |\alpha|^2 \end{bmatrix}
$$

These density matrices differ in their off-diagonal terms Probability of finding system 1 in state *[√]* 1 2 (*| ↑>*¹ +*| ↓>*1) $$ 2 $\overline{}$ $\Big\}$ \vert $\alpha + \sqrt{1 - |\alpha|^2}$ $\Big\}$ \vert 2 $\textbf{Entangled state:} \rightarrow P = \frac{1}{2}$ $\frac{1}{2} |\alpha|^2 + \frac{1}{2}$ $\frac{1}{2}(1-|\alpha|^2) = \frac{1}{2}$ x **no interference**

Quantifying Entanglement:

Unentangled state: *→* $\rho =$ $\sqrt{2}$ α | ↑ > 1 + $\sqrt{1 - |\alpha|^2}$ | ↓ > 1 $\Big|$ 1 < ↑ | α $* +1 < \uparrow \sqrt{1 - |\alpha|^2}$] $\rho =$ $\sqrt{ }$ $\overline{1}$ $|\alpha|^2$ *a* $\sqrt{1-|\alpha|^2}$ $\alpha^* \sqrt{1 - |\alpha|^2}$ $1 - |\alpha|^2$ $\overline{}$ ı

Entangled state: *→*

$$
\rho = |\alpha|^2 |\uparrow\rangle_1 < \uparrow | + (1 - |\alpha|^2)| \downarrow\rangle_1 < \downarrow | = \begin{bmatrix} |\alpha|^2 & 0 \\ 0 & 1 - |\alpha|^2 \end{bmatrix}
$$

Entanglement entropy: $S = -\text{Tr } \rho \ln \rho$ **Unentangled state** $S = 0$ $\bf{Entangled\ state}\ S = -|\alpha|^2\ln|\alpha|^2 - (1-|\alpha|^2)\ln(1-|\alpha|^2) \neq 0$

S-Matrix and out-going density matrix:

Scattering: in-states evolve to a superposition of in-states, with coefficients the S-matrix elements

$$
|\alpha> \ \, \rightarrow \ \, \sum_{\beta,\gamma}S^{\dagger}_{\alpha,\beta\gamma}\,\,|\beta\gamma>
$$

where γ are soft photons.

$$
|\alpha><\alpha|\;\rightarrow\;\sum_{\beta\gamma}S^{\dagger}_{\alpha,\beta\gamma}\;|\beta\gamma>\sum_{\tilde{\beta}\tilde{\gamma}}<\tilde{\beta},\tilde{\gamma}|\;S_{\tilde{\beta}\tilde{\gamma},\alpha}
$$

The S-matrix is infrared divergent.

Infrared divergences cancel from inclusive transition probabilities, i.e. from the **diagonal** elements of the reduced density matrix

$$
\rho = \sum_{\hat{\gamma}} < \hat{\gamma} | \left[\sum_{\beta \gamma} S^{\dagger}_{\alpha,\beta \gamma} \ | \beta \gamma > \sum_{\tilde{\beta} \tilde{\gamma}} < \tilde{\beta}, \tilde{\gamma} | \ S_{\tilde{\beta} \tilde{\gamma},\alpha} \right] | \hat{\gamma} >
$$

What about off-diagonal matrix elements of *ρ***?**

Entanglement entropy from Moeller Scattering:

$$
S = -\text{Tr}\rho \ln \rho = -\sum_{i} \rho_i \ln \rho_i
$$

Density matrix = pure state + trace...

$$
\rho = \left[\begin{array}{c|c} S^{\dagger}|\alpha><\alpha|S \end{array} \right]_{\beta\beta'} +
$$

Soft photon theorem applied to the density matrix: The *S***-matrix is infrared divergent** *→* **define it with a** $\bold{fundamental \ IR \ cutoff} \ m_{\rm ph.}, \ S^{{m_{\rm ph.}}}_{\alpha \ \tilde{A} \gamma \ \gamma}$ $\alpha, \tilde\beta\gamma$ ${\bf Find}\; {\bf state}\colon \sum_{\beta\gamma\tilde{\beta}\tilde{\gamma}}S^{m_{\rm ph.}\dagger}_{\beta\gamma,\alpha}|\beta\gamma><\tilde{\beta}\tilde{\gamma}|S^{m_{\rm ph.}\dagger}_{\alpha,\tilde{\beta}\tilde{\gamma}}$ $\alpha, \tilde{\beta} \tilde{\gamma}$ **Trace soft photons** $m_{ph.} \leq \omega \leq \Lambda_2$ = "detector resolution" **Soft photon theorem** (valid when m_{ph} , $<< \Lambda_2 << \alpha, \beta, \beta$):

$$
\rho_{\beta \ \tilde{\beta}}^{\text{out}} = \sum_{\gamma} \Theta(E_T - \sum E_i) \prod_i \Theta(\Lambda_2 - |k_i|) S_{\beta \gamma, \alpha}^{m_{\text{ph.}} \dagger} S_{\alpha, \tilde{\beta} \gamma}^{m_{\text{ph.}}}
$$

$$
= S^{m_{\rm ph.}\dagger}_{\beta,\alpha} S^{m_{\rm ph.}}_{\alpha,\tilde{\beta}} \left(\frac{\Lambda_2}{m_{\rm ph}}\right)^{\tilde{A}_{\alpha\beta,\alpha\tilde{\beta}}} F(E_T)\ ,\ F(\infty)=1
$$

where

$$
A_{X,Y} = -\sum_{n \in X, m' \in Y} \frac{e_n e_{n'} \eta_n \eta'_n}{8 \pi \beta_{nn'}} \ln \left[\frac{1 + \beta_{nn'}}{1 - \beta_{nn'}} \right]
$$

 $\beta_{nn'}$ = relative relativistic velocity

Soft Photon Theorem II:

Change IR cutoff on internal loops from $m_{\rm ph}$ to Λ_1 :

$$
S_{\alpha,\tilde{\beta}}^{m_{\mathrm{ph.}}} = S_{\alpha,\tilde{\beta}}^{\Lambda_1} \left(\frac{m_{\mathrm{ph}}}{\Lambda_1}\right)^{\frac{1}{2}A_{\alpha\tilde{\beta},\alpha\tilde{\beta}}}
$$

where

$$
A_{X,Y} = -\sum_{n \in X, m' \in Y} \frac{e_n e_{n'} \eta_n \eta'_n}{8\pi \beta_{nn'}} \ln\left[\frac{1 + \beta_{nn'}}{1 - \beta_{nn'}}\right]
$$

 $\beta_{nn'}$ = relative relativistic velocity

Soft photon theorem applied to the density matrix: *m*ph **photon mass as fundamental infrared cutoff** Λ_1 = **Feynman diagram cutoff;** Λ_2 = detector resolution E_T =total energy of soft photons $\alpha\beta\tilde{\beta} >> \Lambda_1, \Lambda_2, E_T >> m_{\rm ph}$

Summary – soft photon theorem implies:

$$
\rho_{\beta\tilde{\beta}} = S^{\dagger \Lambda_1}_{\beta,\alpha} S^{\Lambda_1}_{\tilde{\beta},\alpha} \left(\frac{m_{\text{ph}}}{\Lambda_1}\right)^{\frac{1}{2}A_{\alpha\beta,\alpha\beta}} \left(\frac{m_{\text{ph}}}{\Lambda_1}\right)^{\frac{1}{2}A_{\alpha\tilde{\beta},\alpha\tilde{\beta}}} \left(\frac{\Lambda_2}{m_{\text{ph}}}\right)^{\tilde{A}_{\alpha\beta,\alpha\tilde{\beta}}} F(E_T)
$$

$$
\sim m_{\text{ph}}^{\Delta A}, \ \Delta A = \frac{1}{2} A_{\alpha\beta,\alpha\beta} + \frac{1}{2} A_{\alpha\tilde{\beta},\alpha\tilde{\beta}} - A_{\alpha\beta,\alpha\tilde{\beta}} \geq 0
$$

$$
A_{X,Y} = - \sum_{n \in X, m' \in Y} \frac{e_n e_{n'} \eta_n \eta_n'}{8\pi \beta_{nn'}} \ln \left[\frac{1 + \beta_{nn'}}{1 - \beta_{nn'}}\right]
$$

$$
\beta_{nn'} = \text{relative relativistic velocity}
$$

- A generic density matrix element is proportional $\sim m_{\rm ph}^{\Delta A}$, where ∆*A ≥* 0 and depends on incoming and outgoing four-momenta.
- $\Delta A = 0$ for diagonal elements of the density matrix (transition probabilities)
- *•* Generically, ∆*A >* 0 for off-diagonal elements
- The inequality is saturated, $\Delta A = 0$, and density matrix element nonzero only when the set of outgoing currents match:

$$
\beta = \left\{ \frac{e_1 p_1^{\mu}}{2 \omega(p_1)}, ..., \frac{e_n p_n^{\mu}}{2 \omega(p_n)} \right\}
$$

equals

$$
\tilde{\beta}=\left\{\frac{\tilde{e}_{1}\tilde{p}_{1}^{\mu}}{2\omega(\tilde{p}_{1})},...,\frac{\tilde{e}_{\tilde{n}}\tilde{p}_{\tilde{n}}^{\mu}}{2\omega(\tilde{p}_{\tilde{n}})}\right\}
$$

• **decoherence** momentum eigenstates are pointer basis

Example: Compton scattering

$$
\begin{bmatrix} \kappa & 1 \\ 1 & \kappa & 1 \\ 1 & 1 & \kappa
$$

 $\rho_{k',q';\tilde{k}',\tilde{q}'} = m$ $\frac{e^2}{4\pi^2} \Big[\frac{1}{2\beta}$ $\frac{1}{2\beta}$ ln $\frac{1+\beta}{1-\beta}-1$] $\beta_{\rm ph}$ ^{4 π^2 [2 β ^m 1– β ⁻¹, β =relative electron velocity} Exponent ≥ 0 . Exponent = 0 only when $\beta = 0$. $\text{As } m_{\text{ph}} \to 0, \, \rho_{k',q';\tilde{k}',\tilde{q}'} = 0 \text{ unless } k'_\mu = \tilde{k}'_\mu.$

Implication: *Diagonal elements* of the density matrix are the transition probabilities for QED processes.

 $\rho_{k',q';k',q'} = \textbf{Probability of } |k,q> \rightarrow |k'q'|>0$

Off-diagonal elements vanish $\rho_{k',q';\tilde{k}',\tilde{q}'} = 0, k \neq \tilde{k}'$ ${\bf Probability}\,\ket{k,q} \rightarrowtail \frac{1}{\sqrt{2}}$ $\frac{1}{2}|k'_1, q'_1> + \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ | k'_2 , q'_2 >

equals

1 $\frac{1}{2}$ ·**Probability** $|k, q \rangle \rightarrow |k'_1, q'_1 \rangle$

 $+$

1 $\frac{1}{2}$ ·**Probability** $|k, q \rangle \rightarrow |k'_2, q'_2 \rangle$

Limitations: What if the photon has a mass? *ρk′ ,q′* ;*k*˜*′ ,q*˜ *′* = (*m*ph) *e* 2 ⁴*π*² [1 2*β* ln 1+*^β* 1*−β [−]*¹] **"experimental" bound:** *^m*ph *[∼]* ¹⁰*−*³²*m*el *∼ e −*0*.*1*β* 2 *β <<* 1 *, ∼* (1 *− β* 2)⁰*.*¹ *β ∼* 1 **Extreme off-diagonal elements are emphasized Finite time, etc:** *^m*ph*. [→] ^h*¯ *c* ²*·*time

Infrared safe "dressed states"

For each charged particle, add a coherent state of soft photons:

$$
|p \rangle \rightarrow |p \rangle \equiv W(p)|p \rangle
$$

$$
W(p) = \exp\left\{\sum_{\ell} \int_0^{\Lambda} \frac{d^3k}{2\sqrt{\vec{k}^2 + m_{\rm ph}^2}} \left[\frac{p \cdot \epsilon_{\ell}(k)}{p \cdot k} a_{\ell}^{\dagger}(k) - \frac{p \cdot \epsilon_{\ell}^*(k)}{p \cdot k} a_{\ell}(k) \right] \right\}
$$

$$
m_{\rm ph} \ll \Lambda \ll p \quad k \cdot \epsilon_{\ell}(k) = 0
$$

 $\tilde{S}_{\alpha\beta} \equiv_D < \alpha |S|\beta >_D$ is infrared finite. Out-state can be a pure state

$$
|\alpha >_D < \alpha| \rightarrow \tilde{\rho} = \sum_{\beta} \tilde{S}_{\alpha,\beta}^{\dagger} | \beta >_D \sum_{\tilde{\beta}} |D \tilde{\beta}| \tilde{S}_{\tilde{\beta},\alpha}
$$

$$
\text{Tr}_{\text{soft photons}} \tilde{\rho} = \left(\frac{m_{\text{ph}}}{\Lambda}\right)^{\Delta A}
$$

Conclusions:

- The solution of the infrared problem in quantum electrodynamics (and in perturbative quantum gravity) leads to a fundamental decoherence of final states.
- There are other "infrared safe" approaches. **V.Chung, Phys.Rev.140, B1110 (1965); T.W.B.Kibble, J.Math.Phys.9, 315 (1968); P.P.Kulish, L.D.Faddeev, Theor.Math.Phys.4, 745 (1970); J.Ware, R.Saotome, R.Akhoury, JHEP10, 159 (2013), 1308.6285.** Same decoherence when in-coming state is "infrared safe" coherent state.
- Proper description of incoming wavepackets requires infrared safe incoming states. Decoherence remains.
- Could such a decoherence be observable?

Black hole information paradox

In a theory of quantum gravity, the collision of two high-energy particles (i.e. gravitons) could produce a black hole which would the evaporate by emitting Hawking radiation.

Pure quantum state of two incoming particles evolves to thermal state of Hawking radiation.

$$
|\psi>=\sum_E|E,\tilde{E}> \quad,\quad \rho=\sum_E e^{-\beta_H E}\ |E>
$$

Strominger's idea: (**A.Strominger, arXiv:1706.07143**): soft gravitons purify the Hawking radiation

$$
|\psi> = \sum_{E} |E, \text{soft} > , \ \rho = \text{Tr}_{\text{soft}} |\psi> < \psi| = \sum_{E} e^{-\beta_{H}E} |E> < E|
$$

But $|\psi\rangle = \sum$ $E |E$, soft, \tilde{E} >. Monogamy of entanglement.