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ps(a) = Tr(la){al|¢)(8]) = [(al)[* (1)
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result: a

... giving probabilities for subsequent measurements!
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Quantum Measurement 2

e Quantum system in state |¢)

o Observer measuring (observable A): (relative state)
6) = dala) = D dala) @ [A) = |¢ror) (3)

|A(a)) state of the observer seeing a

e Probabilities of outcomes are probabilities of states of the
observer:

q¢(a) = Tr(L @ |A)(Al|btot) (Dtot|) (4)

“Born” rule
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e empirically equivalent: py z 46
* pyla) = qy(a)

e empirically inequivalent for Wigner's-friend-type experiments

e two formalisms with different inerpretations

e Many-worlds
e Bohmian mechanics
e Kopenhagen

e QBism
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Mo, : {| M)s,| L)s}: Mo, : {la)s,|b)s}
...where| 1) = ala) + B]b), | |) = Bla) — alb)
65 =\ 20 +11)

- Collapse: 2 [ pla] ) [ p(b ] 2)
T OZ2 BQ
A
empirically equivalent
e Relative state: z ‘ q(a | 2) ‘ q(b] z)
U OZQ BQ
d 62 OéQ
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Wigner's - friend paradox: Different agents use different formalisms
for friend's measurement. (subjective collapse)
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Relative-state formalism is empirically inequivalent to collapse
formalism.
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—f—

e To describe one “reality” consistently all agents have to apply
the same formalism.

e Classical communication in the Wigner's - friend setup

e no revelation of the measurement result

e possible conflict with full quantum control

Thank you!
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