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Quantum Measurement 1

• Quantum system in state |φ〉

• Observer measuring the system (observable A) getting result
a ∈ σ(A) with probability

pφ(a) = Tr(|a〉〈a||φ〉〈φ|) = |〈a|φ〉|2 (1)

Born rule

• Measurement update rule: (collapse)

|φ〉 A−−−−−→
result: a

|a〉 (2)

. . . giving probabilities for subsequent measurements!
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Quantum Measurement 2

• Quantum system in state |φ〉

• Observer measuring (observable A): (relative state)

|φ〉 =
∑
a

φa|a〉 7→
∑
a

φa|a〉 ⊗ |A〉 = |φtot〉 (3)

|A(a)〉 state of the observer seeing a

• Probabilities of outcomes are probabilities of states of the
observer:

qφ(a) = Tr(1⊗ |A〉〈A||φtot〉〈φtot|) (4)

“Born” rule
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• empirically equivalent:
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• pφ(a) = qφ(a)

• empirically inequivalent for Wigner’s-friend-type experiments

• two formalisms with different inerpretations

• Many-worlds

• Bohmian mechanics

• Kopenhagen

• QBism
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Observing the Observer

Wigner’s-friend experiments combine different levels of observation.

S MO MSO MSSO

|φS〉 |φSO〉 |Φtot〉

• Observers observing the same quantum system.

• Superobservers observing systems and observers as a joint
system.

• Super-superobservers etc.



Observing the Observer

Wigner’s-friend experiments combine different levels of observation.

S MO MSO MSSO

|φS〉 |φSO〉 |Φtot〉

• Observers observing the same quantum system.

• Superobservers observing systems and observers as a joint
system.

• Super-superobservers etc.



Observing the Observer

Wigner’s-friend experiments combine different levels of observation.

S MO

MSO MSSO

|φS〉

|φSO〉 |Φtot〉

• Observers observing the same quantum system.

• Superobservers observing systems and observers as a joint
system.

• Super-superobservers etc.



Observing the Observer

Wigner’s-friend experiments combine different levels of observation.

S MO MSO

MSSO

|φS〉 |φSO〉

|Φtot〉

• Observers observing the same quantum system.

• Superobservers observing systems and observers as a joint
system.

• Super-superobservers etc.



Observing the Observer

Wigner’s-friend experiments combine different levels of observation.

S MO MSO MSSO

|φS〉 |φSO〉 |Φtot〉

• Observers observing the same quantum system.

• Superobservers observing systems and observers as a joint
system.

• Super-superobservers etc.



Same Level of Observation

S MO

|φS〉

MO1 : {| ↑〉S , | ↓〉S}; MO2 : {|a〉S , |b〉S}

. . . where| ↑〉 = α|a〉+ β|b〉, | ↓〉 = β|a〉 − α|b〉

|φS〉 =
√

1

2
(| ↑〉+ | ↓〉)

• Collapse: z p(a | z) p(b | z)
↑ α2 β2

↓ β2 α2

empirically equivalent

• Relative state: z q(a | z) q(b | z)
u α2 β2

d β2 α2
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U α2 β2

D β2 α2

empirically inequivalent
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Relative-state formalism is empirically inequivalent to collapse
formalism.

Z p(+ | Z) p(− | Z) Is “−” possible?

U
1

2

1

2
yes

D
1

2

1

2
yes

Z q(+ | Z) q(− | Z) Is “−” possible?
U 1 0 no
D 1 0 no

Wigner’s - friend paradox: Different agents use different formalisms
for friend’s measurement. (subjective collapse)
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Contradictions for Encapsulated Observers

A contradiction requires classical information.

S MF

| ↑〉|U〉

| ↓〉|D〉
S MW
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C

• To describe one “reality” consistently all agents have to apply
the same formalism.

• Classical communication in the Wigner’s - friend setup

• no revelation of the measurement result

• possible conflict with full quantum control

Thank you!
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