Precision RENORM Soft and Hard Diffraction Predictions: A Tool for Deciphering Cross Section Measurement Discrepancies



### Konstantin Goulianos The Rockefeller University

http://physics.rockefeller.edu/dino/my.html

member of



7<sup>th</sup> International Conference on New Frontiers in Physics (ICNFP2018) 4-12 July 2018, Kolymbari, Crete, Greece

https://indico.cern.ch/event/663474/overview







ICNFP-2018

Precision RENORM/MBR Diffraction Predictions... K.

K. Goulianos

1



#### Diffraction

- $\Box$  SD1
- $\Box$  SD2
- $p_1p_2 \rightarrow p_1+gap+X_2$  Single Diffraction / Dissociation -1  $p_1p_2 \rightarrow X_1+gap+p_2$  Single Diffraction / Dissociation 2  $p_1p_2 \rightarrow X_1 + gap + X_2$  Double Diffraction / Double Dissociation □ CD/DPE
  - $p_1p_2 \rightarrow gap + X + gap$  Central Diffraction / Double Pomeron Exchange
- $\Box$  Renormalization  $\rightarrow$  Unitarization
  - RENORM Model
- Triple-Pomeron Coupling: unambiguously determined
   Total Cross Section:
- □ Total Cross Section:
  - > Unique prediction, based on a spin-2 tensor glue-ball model

#### **References**

- MBR MC Simulation in PYTHIA8, KG & R. Ciesielski, http://arxiv.org/abs/1205.1446
- EDS BLOIS 2015 Borgo, Corsica, France Jun 29-Jul 4, https://indico.cern.ch/event/362991/  $\geq$ KG, Updated RENORM/MBR-model Predictions for Diffraction at the LHC, http://dx.doi.org/10.5506/APhysPolBSupp.8.783
- Moriond QCD 2016, La Thuile, Italy, March 19-26, http://moriond.in2p3.fr/QCD/2016/  $\succ$
- NPQCD16, Paris, June, https://www.brown.edu/conference/14th-workshop-non-perturbative-guantum-chromodynamics/  $\geq$
- DIFFRACTION 2016, Catania, Sep.2-8 2016 https://agenda.infn.it/conferenceDisplay.py?confld=10935  $\geq$
- MIAMI-2017, Dec. 13-19, https://cqc.physics.miami.edu/Miami2017/Goulianos2017.pdf  $\geq$
- NPQCD 2018, Paris, Jun. https://www.brown.edu/conference/15th-workshop-non-perturbative-guantum-chromodynamics/

**ICNFP-2018** 

Precision RENORM/MBR Diffraction Predictions... K. Goulianos

Similar talk

### RENORM: Basic and Combined Diffractive Processes





ICNFP-2018

# Regge Theory: Values of $s_0 \& g_{PPP}$ ?



ICNFP-2018

4

### **Theoretical Complication: Unitarity!**

$$\left(\frac{d\sigma_{el}}{dt}\right)_{t=0} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}, \ \sigma_t \sim \left(\frac{s}{s_o}\right)^{\epsilon}, \ \text{and} \ \sigma_{sd} \sim \left(\frac{s}{s_o}\right)^{2\epsilon}$$

σ<sub>sd</sub> grows faster than σ<sub>t</sub> as s increases \*
 Junitarity violation at high s
 (also true for partial x-sections in impact parameter space)

 $\Box$  the unitarity limit is already reached at  $\sqrt{s} \sim 2$  TeV

need unitarization

\* similarly for  $(d\sigma_{el}/dt)_{t=0}$  w.r.t.  $\sigma_t$ , but this is handled differently in RENORM



ICNFP-2018

# Single Diffraction Renormalized - 1



# Single Diffraction Renormalized - 2

Experimentally 
$$\Rightarrow$$
  

$$\kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-p-}(0)} \approx 0.17$$

$$\kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104$$

$$\kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104$$

QCD: 
$$\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} \xrightarrow{Q^2 = 1} \approx 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} = 0.18$$

**ICNFP-2018** 

Precision RENORM/MBR Diffraction Predictions... K. Goulianos

8

# Single Diffraction Renormalized - 3

$$\begin{split} \frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} &= \left[\frac{\sigma_{\circ}}{16\pi} \sigma_{\circ}^{I\!Pp}\right] \frac{s^{2\epsilon}}{N(s, s_o)} \frac{e^{bt}}{(M^2)^{1+\epsilon}} \\ b &= b_0 + 2\alpha' \ln \frac{s}{M^2} \qquad s_{\circ}^{\text{CMG}} = (3.7 \pm 1.5) \text{ GeV}^2 \\ N(s, s_o) &\equiv \int_{\xi_{\min}}^{\xi_{\max}} d\xi \int_{t=0}^{-\infty} dt \, f_{I\!P/p}(\xi, t) \stackrel{s \to \infty}{\to} \sim s_{\circ}^{\epsilon} \frac{s^{2\epsilon}}{\ln s} \quad \text{\ensuremath{\leftarrow}} \\ \frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} \stackrel{s \to \infty}{\to} \sim \ln s \, \frac{e^{bt}}{(M^2)^{1+\epsilon}} \\ \sigma_{sd} \xrightarrow{s \to \infty} \sim \frac{\ln s}{b \to \ln s} \Rightarrow const \end{split}$$

**ICNFP-2018** 

# M<sup>2</sup> - Distribution: Data → dσ/dM<sup>2</sup>|<sub>t=-0.05</sub> ~ independent of s over 6 orders of magnitude!



### factorization breaks down to ensure M<sup>2</sup>-scaling

ICNFP-2018

# Scale s<sub>0</sub> and *PPP* Coupling

Pomeron flux: interpreted as gap probability

 $\rightarrow$  set to unity: determines  $g_{PPP}$  and  $s_0$ 

KG, PLB 358 (1995) 379 http://www.sciencedirect.com/science/article/pii/037026939501023J



Pomeron-proton x-section

- $\Box$  Two free parameters:  $s_0$  and  $g_{PPP}$
- **D** Obtain product  $g_{PPP} S_0^{\epsilon/2}$  from  $\sigma_{SD}$
- $\Box$  Renormalize Pomeron flux: determines  $s_o$
- □ Get unique solution for g<sub>PPP</sub>

### DD at CDF



**ICNFP-2018** 

### SDD at CDF



### **CD/DPE at CDF**

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.91.011802



correctly implemented



**ICNFP-2018** 

### **RENORM Difractive Cross Sections**

MBR MC Simulation in PYTHIA8→<u>http://arxiv.org/abs/1205.1446</u>

$$\frac{d^2 \sigma_{SD}}{dt d\Delta y} = \frac{1}{N_{\text{gap}}(s)} \left[ \frac{\beta^2(t)}{16\pi} e^{2[\alpha(t)-1]\Delta y} \right] \cdot \left\{ \kappa \beta^2(0) \left( \frac{s'}{s_0} \right)^{\epsilon} \right\},$$

$$\frac{d^3 \sigma_{DD}}{dt d\Delta y dy_0} = \frac{1}{N_{\text{gap}}(s)} \left[ \frac{\kappa \beta^2(0)}{16\pi} e^{2[\alpha(t)-1]\Delta y} \right] \cdot \left\{ \kappa \beta^2(0) \left( \frac{s'}{s_0} \right)^{\epsilon} \right\},$$

$$\frac{d^4 \sigma_{DPE}}{dt_1 dt_2 d\Delta y dy_c} = \frac{1}{N_{\text{gap}}(s)} \left[ \Pi_i \left[ \frac{\beta^2(t_i)}{16\pi} e^{2[\alpha(t_i)-1]\Delta y_i} \right] \right] \cdot \kappa \left\{ \kappa \beta^2(0) \left( \frac{s'}{s_0} \right)^{\epsilon} \right\},$$

$$\beta^2(t) = \beta^2(0)F^2(t)$$

$$F^{2}(t) = \left[\frac{4m_{p}^{2} - 2.8t}{4m_{p}^{2} - t} \left(\frac{1}{1 - \frac{t}{0.71}}\right)^{2}\right]^{2} \approx a_{1}e^{b_{1}t} + a_{2}e^{b_{2}t}$$

 $α_1=0.9, α_2=0.1, b_1=4.6 \text{ GeV}^{-2}, b_2=0.6 \text{ GeV}^{-2}, s'=s e^{-\Delta y}, \kappa=0.17, \\
κβ^2(0)=σ_0, s_0(units)=1GeV^2, σ_0=2.82 \text{ mb or }7.25 \text{ GeV}^{-2}$ 

**ICNFP-2018** 

### Total, Elastic, and Total Inelastic x-Sections

$$\sigma_{\rm ND} = (\sigma_{\rm tot} - \sigma_{\rm el}) - (2\sigma_{\rm SD} + \sigma_{\rm DD} + \sigma_{\rm CD})$$

CMG R.J.M. Covolan<sup>1</sup>, J. Montanha<sup>2</sup>, K. Goulianos<sup>3</sup> The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA PLB 389, 196 (1996)

http://www.sciencedirect.com/science/article/pii/S0370269396013627

$$\sigma_{\text{tot}}^{p^{\pm}p} = \begin{cases} 16.79s^{0.104} + 60.81s^{-0.32} \mp 31.68s^{-0.54} & \text{for } \sqrt{s} < 1.8\\ \sigma_{\text{tot}}^{\text{CDF}} + \frac{\pi}{s_0} \left[ \left( \ln \frac{s}{s_F} \right)^2 - \left( \ln \frac{s^{\text{CDF}}}{s_F} \right)^2 \right] & \text{for } \sqrt{s} \ge 1.8 \end{cases}$$

KG MORIOND-2011 http://moriond.in2p3.fr/QCD/2011/proceedings/goulianos.pdf

$$\sqrt{s^{\text{CDF}}} = 1.8 \text{ TeV}, \ \sigma_{\text{tot}}^{\text{CDF}} = 80.03 \pm 2.24 \text{ mb}$$
  
 $\sqrt{s_F} = 22 \text{ GeV} \quad s_0 = 3.7 \pm 1.5 \text{ GeV}^2$ 

$$\sigma_{el}^{p \pm p} = \sigma_{tot}^{p \pm p} \times (\sigma_{el}/\sigma_{tot})^{p \pm p}$$
, with  $\sigma_{el}/\sigma_{tot}$  from CMG  
> small extrapolation from 1.8 to 7 and up to 50 TeV

ICNFP-2018



- This formula should be valid above the knee in  $\sigma_{sd}$  vs.  $\sqrt{s}$  at  $\sqrt{s_F} = 22$  GeV therefore valid at  $\sqrt{s} = 1800$  GeV.
- Use  $m^2 = s_o$  in the Froissart formula multiplied by 1/0.389 to convert it to mb<sup>-1</sup>.
- Note that contributions from Reggeon exchanges at  $\sqrt{s} = 1800$  GeV are negligible, as can be verified from the global fit of CMG
- Obtain the total cross section at the LHC:

$$\sigma_t^{\text{LHC}} = \sigma_t^{\text{CDF}} + \frac{\pi}{s_o} \cdot \left( \ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right) \qquad \begin{array}{c} \textbf{98 \pm 8 \ mb \ at \ 7 \ TeV} \\ \textbf{109 \pm 12 \ mb \ at \ 14 \ TeV} \end{array} \qquad \begin{array}{c} \textbf{Uncertainty} \\ \textbf{is \ due \ to \ s_o} \end{array}$$

#### **ICNFP-2018**

### Reduce Uncertainty in s<sub>0</sub>



ICNFP-2018

2015

| 2 | √s     | MBR/Exp               | σ <sub>tot</sub>         | C                                                     | <b>7</b> el            | $\sigma_{inel}$        |
|---|--------|-----------------------|--------------------------|-------------------------------------------------------|------------------------|------------------------|
| 5 | 7 TeV  | MBR                   | 95.4±1.2                 | 2                                                     | 6.4±0.3                | 69.0±1.0               |
| 2 |        | TOTEM<br>totem-lumInd | 98.3±0.2±2.8<br>98.0±2.5 | 24<br>25                                              | 4.8±0.2±1.2<br>5.2±1.1 | 73.7±3.4<br>72.9±1.5   |
|   |        | ATLAS                 | 95.35±1.36               | 24                                                    | 4.00±0.60              | 71.34±0.90             |
| ) | 8 TeV  | MBR                   | 97.1±1.4                 | 2                                                     | 7.2±0.4                | 69.9±1.0               |
|   |        | TOTEM                 | 101.7±2.9                | 2                                                     | 7.1±1.4                | 74.7±1.7               |
|   |        |                       |                          |                                                       |                        |                        |
|   | 13 TeV | MBR                   | 103.7±1.9                | 3                                                     | 0.2±0.8                | 73.5±1.3               |
|   |        | ATLAS                 |                          | σ <sub>inel</sub> =73.1±0.9(exp)±6.<br>±3.8(extra.)mb |                        | 9(exp)±6.6(lumi)<br>nb |

RENORM/MBR with a tensor-Pomeron model predicts measured cross sections to the ~1% level

#### Test of RENORM/MBR: ATLAS results using the ALFA and RP detectors to measure the cross sections

Stay tuned!

Totem 7 TeV http://arxiv.org/abs/1204.5689

Totem-Lum-Ind 7 TeV http://iopscience.iop.org/article/10.1209/0295-5075/101/21004

Atlas 7 TeV: http://arxiv.org/abs/1408.5778

**ICNFP-2018** 

Totem 8 TeV http://dx.doi.org/10.1103/PhysRevLett.111.012001

Atlas13 TeV Aspen 2016 Doug Schafer https://indico.cern.ch/event/473000/timetable/#all.detailed

Atlas/Totem 13TeV DIS15 <a href="https://indico.desy.de/contributionDisplay.py?contribId=330&confId=12482">https://indico.desy.de/contributionDisplay.py?contribId=330&confId=12482</a>

### Predictions vs Measurements <sup>w</sup>/reduced Uncertainty in s<sub>o</sub> #1

### **ICNFP 2016**

| Ialk            | √s     | MBR/Exp       | Reference<br>→next slide | S <sub>tot</sub> | S <sub>el</sub> | S <sub>inel</sub>                               |
|-----------------|--------|---------------|--------------------------|------------------|-----------------|-------------------------------------------------|
| 010             | 7 TeV  | MBR           |                          | 95.4±1.2         | 26.4±0.3        | 69.0±1.0                                        |
| א<br>ייד<br>ייד |        | ATLAS         | 1                        | 95.35±1.36       | 24.00±0.60      | 71.34±0.90                                      |
|                 |        | TOTEM         | 2                        | 101.7±2.9        | 27.1±1.4        | 74.7±1.7                                        |
| -<br>M          |        | TOTEM_Lum_Ind | 3                        | 98.0±2.5         | 24.00±0.60      | 72.9±1.5                                        |
| E O E           | 8 TeV  | MBR           |                          | 97.1±1.4         | 27.2±0.4        | 69.9±1.0                                        |
| de T            |        | TOTEM         | 4                        | 101.7±2.9        | 27.1±1.4        | 74.7±1.7                                        |
| 5               | 13 TeV | MBR           |                          | 103.7±1.9        | 30.2±0.8        | 73.5±1.3                                        |
|                 |        | ATLAS         | 5&6                      |                  | D               | 73.1±0.9 (exp) ±6.6 (lumi)<br>±3.8 (extr)       |
|                 |        | CMS           | 7                        |                  |                 | 71.3±0.5 (exp) ±2.1 (lumi)<br>±2.7 (extr) CONT→ |

ICNFP-2018

### Predictions vs Measurements <sup>w</sup>/reduced Uncertainty in s<sub>o</sub> #2

aveat (slide from my ICNFP-2016 talk)

The MBR  $\sigma_{el}$  is larger than the ATLAS and the TOTEM\_lum\_Ind measurements by ~2 mb at  $\sqrt{s}=7$  TeV, which might imply a higher MBR prediction at  $\sqrt{s}=13$  TeV by 2-3 mb. Lowering the MBR  $\sigma_{el}$  prediction would lead to a larger  $\sigma_{inel}$ . This interplay between  $\sigma_{el}$  and  $\sigma_{inel}$  should be kept in mind as more results of  $\sigma_{el}$  and  $\sigma_{tot}$  at  $\sqrt{s} = 13$  TeV become available.

RENORM/MBR with a tensor-Pomeron model predicts measured cross sections to the ~1% level

#### □ Test of RENORM/MBR:

ATLAS results using the ALFA and RP detectors to measure the cross sections

Stay tuned!

- 1) Atlas 7 TeV: http://arxiv.org/abs/1408.5778
- 2) Totem 7 TeV http://arxiv.org/abs/1204.5689
- 3) Totem-Lum-Ind 7 TeV http://iopscience.iop.org/article/10.1209/0295-5075/101/21004
- 4) Totem 8 TeV http://dx.doi.org/10.1103/PhysRevLett.111.012001
- 5) Atlas13 TeV Aspen 2016 D. Schafer https://indico.cern.ch/event/473000/timetable/#all.detailed
- 6) Atlas 13TeV DIS-2016 M. Trzebinski ttps://indico.desy.de/contributionDisplay.py?contribId=330&confId=12482
- 7) CMS 13TeV DIS-2016 H. Van Haevermaet <u>https://indico.desy.de/contributionDisplay.py?contribId=105&confld=12482</u>

#### ICNFP-2018

### MBR vs. ICHEP 2016 cross-section results

| √s     | MBR/Exp                  | <b>Ref. #</b><br>cf. slide19 | σ <sub>tot</sub>      | $\sigma_{el}$                                  | σ <sub>inel</sub>                                                             |  |
|--------|--------------------------|------------------------------|-----------------------|------------------------------------------------|-------------------------------------------------------------------------------|--|
| 7 TeV  | MBR                      |                              | 95.4±1.2              | 26.4±0.3                                       | 69.0±1.0                                                                      |  |
|        | ATLAS                    | 1                            | 95.35±1.36            | 24.00±0.60                                     | 71.34±0.90                                                                    |  |
|        | TOTEM                    | 2                            | 101.7±2.9             | 27.1±1.4                                       | 74.7±1.7                                                                      |  |
|        | TOTEM_Lum_Ind            | 3                            | 98.0±2.5              | 24.00±0.60                                     | 72.9±1.5                                                                      |  |
| 8TeV   | MBR                      | (                            | 97.1±1.4              | 27.2±0.4                                       | 69.9±1.0                                                                      |  |
|        |                          |                              | ←/                    | ←ATLAS vs. MBR in excellent agreement at 8 TeV |                                                                               |  |
|        | TOTEM<br>ATLAS-ALFA fit  | 4<br>ICHEP16                 | 101.7±2.9<br>96.1±0.9 | 27.1±1.4<br>24.3±0.4                           | 74.7±1.7                                                                      |  |
| 13 TeV | MBR                      |                              | 103.7±1.9             | 30.2±0.8                                       | 73.5±1.3                                                                      |  |
|        | ATLAS<br>ALFA-fit-result | 5 & 6<br>ICHEP16             |                       |                                                | 73.1±0.9 (exp) ±6.6 (lumi) ±3.8 (extr)<br>79.3±0.6(exp) ±1.3(lumi) ±2.5(extr) |  |
|        | CMS                      | 7+ICHEP16                    |                       |                                                | 71.3±0.5 (exp) ±2.1 (lumi) ±2.7 (extr)                                        |  |

✓ Tomáš Sýkora, ICHEP16 x-sections summary talk <u>http://ichep2016.org/</u>

❑ At 13 TeV MBR is happy between the ATLAS and CMS ICHEP results
 → awaiting settlement between the two experiments – keep tuned!

ICNFP-2018

### MBR vs. ICHEP 2016 cross-sections

| $\sqrt{s}$ | Input source   | Reference*  | $\sigma_{ m tot}$ | $\sigma_{ m el}$ | $\sigma_{\rm inel}$                                             |
|------------|----------------|-------------|-------------------|------------------|-----------------------------------------------------------------|
| (TeV)      |                |             | (mb)              | (mb)             | (mb)                                                            |
| 7          | MBR            | а           | $95.4 \pm 1.2$    | $26.4\pm0.3$     | $69.0 \pm 1.0$                                                  |
|            | ATLAS          | b           | $95.35 \pm 1.36$  | $24.00 \pm 0.60$ | $71.34 \pm 0.90$                                                |
|            | TOTEM          | с           | $101.7 \pm 1.36$  | $27.1 \pm 1.4$   | $74.7 \pm 1.7$                                                  |
|            | TOTEM_Lum_ind  | d           | $98.0 \pm 2.5$    | $24.00 \pm 0.60$ | $72.9 \pm 1.5$                                                  |
| 8          | MBR            | а           | $97.1 \pm 1.4$    | $27.2 \pm 0.4$   | $69.9 \pm 1.0$                                                  |
|            | TOTEM          | e           | $101.7 \pm 2.9$   | $27.1 \pm 1.4$   | $74.8 \pm 1.7$                                                  |
|            | ATLAS_ALFA_fit | (h) ICHEP16 | $96.1 \pm 0.9$    | $24.3 \pm 0.4$   | XXX                                                             |
| 13         | MBR            | а           | $103.7 \pm 1.9$   | $30.2 \pm 0.8$   | $73.5 \pm 1.3$                                                  |
|            | ATLAS          | f&g         | XXX               | XXX              | $73.1 \pm 0.9(\exp) \pm 3.8(\exp) \pm 6.6(\text{lumi})$         |
|            | ATLAS_ALFA_fit | (h) ICHEP16 | XXX               | XXX              | $79.3 \pm 0.6(\exp)\pm 2.5(\exp)\pm 1.3(\operatorname{lumi})$   |
|            | CMS            | (h) ICHEP16 | XXX               | XXX              | $71.3 \pm 0.6(\exp) \pm 2.7(\exp) \pm 0.1(\operatorname{lumi})$ |

\*Reference:

(a) http://arxiv.org/abs/1205.1446

(b) http://arxiv.org/abs/1408.5778

(c) http://arxiv.org/abs/1204.5689

(d) http://iopscience.iop.org/article/10.1209/0295-5075/101/21004

(e) http://dx.doi.org/10.1103/PhysRevLett.111.012001

(f) M. Trzebinski (ATLAS), DIS-2016 [7]-(a)

(g) H. Van Haevermaet (CMS), DIS-2016 [7]-(b)

(h) T. Sykora, Cross sections summary, ICHEP16 [8]

### DIS-2017: MBR vs. TOTEM @ 2.76 TeV

https://indico.cern.ch/event/568360/

(from talk by Frigyes Nemes, slide #20)

|            | TOTEM                              | σ <sub>tot</sub><br>[mb] | σ <sub>el</sub><br>[mb] | σ <sub>inel</sub><br>[mb] |
|------------|------------------------------------|--------------------------|-------------------------|---------------------------|
| ONO + A    | 4.                                 | $04.7 \pm 3.3$           | $21.0 \pm 1.4$          | $02.0 \pm 2.9$            |
| The The    | C A AZ                             |                          |                         |                           |
| Universi   | $\frac{der}{ds} = MBR \rightarrow$ | 85.2                     | 21.7                    | 63.5                      |
| 1901<br>55 | star Syst. U                       | ncertainty ~?            | 1.5% due to th          | at in s <sub>o</sub>      |

Excellent agreement between TOTEM and MBR at 2.76 TeV
 Awaiting forthcoming results at 13 TeV from ATLAS, CMS, TOTEM

### LHCC-2017: MBR vs. TOTEM @ 13 TeV

#### https://indico.cern.ch/event/679087/

 $103.7 \pm 1.9$ 

(from talk by K. Osterberg)

30.2±0.8



Rockefeller 1901 South States 1901 South States 1901 South States S

TOTEM paper ->

**CERN-EP-2017-321** 

**10 December 2017** 

 $\sigma_{tot}$  = 110.6 ± 3.4 mb,  $\sigma_{inel}$  = 79.5 ± 1.8 mb,  $\sigma_{el}$  = 31.0 ± 1.7 mb

73.5+1.3

Conventional models (COMPETE) not able to describe simultaneously TOTEM  $\sigma_{tot} \& \rho$  measurements  $\Rightarrow$  data compatible with t-channel exchange of a colourless QCD 3 gluon J<sup>PC</sup> = 1<sup>--</sup> bound state ?

| Physics quantity                  | Value         |          | Total uncertainty                      |  |
|-----------------------------------|---------------|----------|----------------------------------------|--|
|                                   | $\rho = 0.14$ | ho = 0.1 |                                        |  |
| $B [\text{GeV}^{-2}]$             | 20.           | 36       | $5.3 \cdot 10^{-2} \oplus 0.18 = 0.19$ |  |
| $\sigma_{\rm tot}$ [mb]           | 109.5         | 110.6    | 3.4                                    |  |
| $\sigma_{\rm el}$ [mb]            | 30.7          | 31.0     | 1.7                                    |  |
| $\sigma_{\rm inel}$ [mb]          | 78.8          | 79.5     | 1.8                                    |  |
| $\sigma_{ m el}/\sigma_{ m inel}$ | 0.3           | 90       | 0.017                                  |  |
| $\sigma_{ m el}/\sigma_{ m tot}$  | 0.281         |          | 0.009                                  |  |

Reasonable agreement between TOTEM and MBR predictions
 Possible Odderon effects not included in MBR

ICNFP-2018

#### First Experimental Hint for the Odderon Excerpt from the thesis of Richard Breedon, Rockefeller University, 1988

#### 10.4 Discussion

This section concludes with an example of how theoretical considerations may be examined using these results. A. Martin has pointed out [10.6] that by taking  $E = \frac{1}{2}(F(pp) - F(\overline{pp}))$  at t = 0 and defining the quantity  $\rho$  = Re F /Im F, one can demonstrate from the optical theorem the following identity:

$$\rho_{\rm c} = \Delta \rho \frac{-\sigma(\overline{\rm pp})}{\Delta \sigma} + \rho(\rm pp) + (10.4)$$

Additionally, it is possible to prove using dispersion relations that if  $\Delta \sigma \sim E^{-\alpha}$  then  $\mu = \cot(\pi \alpha/2)$ . If one uses the value  $\alpha = 0.56 \pm 0.01$  which Amos et al. found in applying the Amaldi-type parametrization of Eq. 3.15, then  $\mu = 0.827 \pm 0.026$ . Using  $\Delta \sigma = 1.94$  mb, the UA6 measurements inserted into Eq. 10.4 give  $\mu = 0.84 \pm 0.34$ , consistent with the assumption that  $\Delta \sigma \rightarrow 0$  aymptotically as  $E^{-\alpha}$  On the other hand, the fit assuming a significant odd-under-crossing amplitude of Ref. 3.7 predicts for the UA6 energy  $\rho_{\rm odd}(\rm pp) = -0.007$  and  $\rho_{\rm odd}(\rm pp) = 0.054$  yielding  $\Delta \rho = 0.061$ . This demonstrates a difference between the UA6 result and the odderon prediction of 0.022  $\pm$  0.014 which, while not suggestive, does not rule out the possibility of an odd-under-crossing amplitude dominating at high energies. A definitive answer awaits precise comparisons of pp and pp at higher energies.

**ICNFP-2018** 

### **Pythia8-MBR Hadronization Tune**

An example of the diffractive tuning of PYTHIA-8 to the RENORM-NBR model



R. Ciesielski, "Status of diffractive models", CTEQ Workshop 2013 https://indico.cern.ch/event/262192/contributions/1594778/attachments/463480/642352/CTEQ13diffraction.pdf

ICNFP-2018

### SD and DD x-Sections vs Models

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.012003



ICNFP-2018

Precision RENORM/MBR Diffraction Predictions... K. Goulianos

28

### Monte Carlo Algorithm - Nesting



## SUMMARY

Review of RENORM predictions of diffractive physics basic processes: SD1,SD2, DD, CD (DPE) combined processes: multigap x-sections ND > no diffractive gaps: the only final state to be tuned □ Monte Carlo strategy for the LHC – "nesting"  $\Box$  Precision RENORM  $\sigma_{tot}$  prediction <sup>W</sup>/tensor glue-ball model **ICHEP** 2016 □ At 8 TeV ATLAS and MBR in excellent agreement □ Disagreement betweenTOTEM and MBR persists □ At 13 TeV MBR lies comfortably (!) between the ATLAS and CMS LHCC-201: NEW TOTEM RESULTS at 8 and 13 TeV vs. MBR □ Agreement at 8 TeV, compatibility at 13 TeV NESTING in MC simulation

Thank you for your attention!