Search for Dark Matter at the LHC with the ATLAS and CMS Detectors

Nicolò Trevisani

on behalf of the ATLAS and CMS collaborations

IFCA – Santander

July 9, 2018

Introduction

Dark matter is expected to compose about 25% of our Universe

- Its particle nature is unknown and cannot be explained within Standard Model
- At a hadron collider have to assume interaction between Standard Model and Dark Matter candidate particles
- Main candidate: Weakly Interacting Massive Particle

74 N

Search for Dark Matter at the LHC

The LHC currently represents the best machine to produce high energy physics both for its energy and for its luminosity

- Possibility to study heavy particles with low production cross sections
- Have to assume at least weak interaction between dark matter (DM) and standard model (SM) particles
- Two multipurpose experiments to (indirectly) detect dark matter

CMS Integrated Luminosity, pp

The ATLAS and CMS Experiments

Key Variable: $p_{\mathrm{T}}^{\mathrm{miss}}$

At the LHC the proton beams carry almost no transverse momentum

• The sum of all the final-state particles transverse momentum is expected to be 0

- $\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}$ = - $|\sum \vec{\mathrm{p}}_{\mathrm{T}}|$ = 0

- Dark matter particles are not expected to interact with the detectors
 - In final states with dark matter particles, $p_{\rm T}^{\rm miss} \neq 0$
- Events with non-null p_T^{miss} can arise from limited detector resolution, presence of neutrinos in final state, non-collisional background events, ...
 - Fundamental to have control of the detector to distinguish SM processes from new physics

How to Hunt Dark Matter at the LHC

Since dark matter is not expected to interact in the detectors, two indirect approaches are used

Mono-X searches

- Dark matter particles are produced together with standard model particles
- Look for an energetic SM particle recoiling against the invisible DM system
- $p_{\rm T}^{\rm miss}$ + X signatures

Mediator searches

- Dark matter mediators are produced and decay to pair of SM particles, typically quarks
- Search for bumps in the \boldsymbol{m}_{jj} spectrum

SUSY-like searches in which the DM particles χ can decay to SM particles are not covered in this talk \Im

Mono-Jet

Currently the most sensitive DM search at LHC

- References
 - CMS: arXiv:1712.02345
 - ATLAS: arXiv:1711.03301
- Energetic jet recoiling against invisible system
 - $\begin{array}{ll} & \mbox{-} & \mbox{p}_{\rm T}^{\rm jet} > 100 \mbox{ GeV} \\ & (250 \mbox{ GeV for ATLAS}) \\ & \mbox{-} & \mbox{p}_{\rm T}^{\rm miss} > 250 \mbox{ GeV} \end{array}$
- Main backgrounds
 - Zightarrow
 u
 u + jets, W $ightarrow \ell
 u$ + jets
 - Estimated with data in control regions
- Rsults extracted through fit to p_T^{miss} variable
 - Signal region and control regions fitted simultaneously
- Results interpreted in terms of vector mediator and axial-vector mediator

Mono-Jet - Interpretations

- Vector mediator exclusion (left)
 - m_{med}: 1800 GeV
 - m_{DM}: 700 GeV
- Axial-vector mediator exclusion (right)
 - m_{med}: 1600 GeV
 - m_{DM}: 500 GeV

Mono- γ

The analysis is similar to the mono-jet one, but the probability of producing a photon from ISR is smaller than the one to produce a gluon, making the analysis less sensitive

- References
 - CMS: arXiv:1706.03794v2
 - ATLAS: arXiv:1704.03848v2
- Energetic photon recoiling against invisible system
 - $p_T^{\gamma} > 150 \text{ GeV}$ (175 GeV for CMS)
 - CMS: $p_T^{miss} > 170 \text{ GeV}$ - ATLAS: $\frac{\rho_T^{miss}}{\sqrt{\sum E_T}} > 8.5 \text{ GeV}^{1/2}$
- Main backgrounds
 - Z $\rightarrow \nu \nu$ + γ , W $\rightarrow \ell \nu$ + γ
 - Electrons faking photons in the detectors
- Results interpreted in terms of vector mediator and axial-vector mediator

Mono- γ - Interpretations

- Vector mediator exclusion (left)
 - m_{med}: 1200 GeV
 - m_{DM}: 500 GeV
- Axial-vector mediator exclusion (right)
 - m_{med}: 1200 GeV
 - m_{DM}: 350 GeV

Mono-Z

The production of a Z boson decaying leptonically is easily tagged by invariant mass requirings

- References
 - CMS: arXiv:1711.00431v2
 - ATLAS: arXiv:1708.09624v2
- $\bullet~$ Two same flavour leptons compatible with the decay of a Z boson and large $p_{\rm T}^{\rm miss}$
 - 76 GeV < $m_{\ell\ell}$ < 106 GeV
 - $p_{\rm T}^{\rm miss}$ > 90 GeV (100 GeV for CMS)
- Main backgrounds
 - $ZZ \rightarrow \ell \ell \nu \nu$, $WZ \rightarrow \ell \nu \ell \ell$, $WW \rightarrow \ell \nu \ell \nu$, top, Z + jets
- Results interpreted in terms of
 - CMS: vector mediator and axial-vector mediator
 - ATLAS: axial-vector mediator

୬ < (~ 11 / 34

Mono-Z - Interpretations

- Vector mediator exclusion (left, CMS-only)
 - $m_{\rm med}$: 680 GeV
 - $m_{\rm DM}{:}$ 250 GeV
- Axial-vector mediator exclusion (right)
 - $m_{\rm med}$: 700 GeV
 - $m_{\rm DM}{:}~150~\text{GeV}$

Mono-Top

CMS inspected also the final state with only one top quark and $p_{\rm T}^{\rm miss}$

- Only the hadronic decay of the top quark studied
 - CMS: arXiv:1801.08427
- Highly boosted top quark recoiling against DM
 - One single jet with $p_{\rm T}>250~\text{GeV}$ and mass compatible with a top quark
 - $p_{\rm T}^{\rm miss}$ > 250~GeV
 - Dedicated BDT to separate top quark from gluons and lighter quarks
- Main backgrounds: Z+jets, W+jets, and ttbar
- Signal extracted with fit to $p_{\rm T}^{\rm miss}$ variable
- Results interpreted in terms of FCNC vector boson

Mono-Higgs

The ISR of a Higgs boson is strongly suppressed \to possible to directly inspect the interaction between DM mediator and Higgs boson

- Different Higgs decay channel studied
 - CMS: $\mathbf{h} \rightarrow \mathbf{b}\mathbf{b}$, $\mathbf{h} \rightarrow \tau \tau + \mathbf{h} \rightarrow \gamma \gamma$
 - ATLAS: $\mathbf{h} \rightarrow \mathbf{b} \mathbf{b}, \ \mathbf{h} \rightarrow \gamma \gamma$
- Typical analysis strategy
 - Tag the Higgs boson through invariant mass requirements
 - Ask for considerable $p_{\rm T}^{\rm miss}$
- Results interpreted in terms of
 - h→ bb: Z'-2HDM model (for CMS also Z'-Baryonic)
 - $h \rightarrow \tau \tau$, $h \rightarrow \gamma \gamma$: Z'-2HDM model and Z'-Baryonic model

Mono-Higgs - Interpretations

For Z'-Baryonic model slightly different value of quarks-mediator coupling (ATLAS $g_q = 1/3$, CMS $g_q = 0.25$)

ttbar + DM

This search assumes a Yukawa coupling between a scalar or pseudoscalar DM mediator and SM particles

 \rightarrow a signature with top quarks takes advantage from the large coupling

- Final states with 0, 1 or 2 leptons studied
 - ATLAS: arXiv:1710.11412v2, arXiv:1711.115120
 - CMS: inspireHep:1665757
- Typical analysis strategy
 - Require the presence of b-jets or top-tagged events
 - Ask for considerable $p_{\rm T}^{\rm miss}$
- Main background: SM ttbar production

ttbar + DM - Interpretations

ATLAS results shown here do not include semi-leptonic top decay channel. ATLAS Fully hadronic and dileptonic channels are not shown combined together.

- Scalar mediator exclusion (left)
 - m_{med}: 165 GeV
 - m_{DM}: 75 GeV
- Pseudo-scalar exclusion (right)
 - m_{med}: 220 GeV
 - m_{DM}: 105 GeV

Di-Jet Searches

The LHC is also an excellent machine to look for dark matter resonances decaying to pairs of quarks

- Abundant production of events with two jets in the final state at LHC
- $\bullet~$ QCD predicts monotonically falling spectrum for $m_{\rm jj}$
 - Look for bumps due to new resonances
- In SM jets are preferentially produced in the forward direction
 - Look for more isotropic signatures

Di-Jet

The search of heavy resonances decaying to a pair of quarks is the most straightforward way to look for dark matter in this final state

- References
 - ATLAS: arXiv:1703.09127v1
 - CMS: arXiv:1806.00843v1
- Typical analysis strategy
 - Select event with two reconstructed jets
 - Fit the m_{jj} distribution with a smooth function
 - Look for excesses in the distribution
- This approach is sensitive to very heavy mediators
 - $m_{\rm med} > 1 \text{ TeV}$
- Sensitivity to low-mass mediators limited by trigger bandwidth
 - Need to require high $p_{\rm T}^{\rm jet}$ thresholds

Di-Jet - Interpretations

The results are interpreted in terms of coupling between the dark matter mediator and the SM quarks

- ATLAS: For mediator mass of 1.5 TeV couplings larger than 0.08 are excluded
- CMS: For mediator masses of 1.6 TeV couplings larger than 0.12 are excluded

Low-Mass Di-Jet

To recover the inefficiencies at low mediator masses mainly due to trigger different approaches have been implemented

- Use only limited relevant information at trigger level to enhance the rate of data acquisition
 - ATLAS: arXiv:1804.03496v1
 - CMS: arXiv:1806.00843v1
- Require the jets pair to recoil against an ISR jet
 - The jets pair is highly boosted and events with lower m_{jj} can pass the trigger thresholds
 - CMS: arXiv:1710.00159v2
- Sensitivity recovered to low-mass resonances
 - Trigger level analysis: $m_{jj} > 450 \text{ GeV}$
 - ISR-recoil analysis:
 50 GeV < m_{jj} < 300 GeV

Low-Mass Di-Jet - Interpretations

The results are interpreted in terms of coupling between the dark matter mediator and the SM quarks or resonances invariant mass

< □ ▶ < 큔 ▶ < 코 ▶ < 코 ▶ < 코 ▶ 22 / 34

Di-Jet χ Searches

An alternative search for dark matter in the di-jet channel exploits the angular distribution of the quarks in the final state

- Particularly effective in case of wide resonances or non-resonant searches
 - ATLAS: arXiv:1703.09127v1
 - CMS: arXiv:1803.08030v1
- Named after the χ angular distribution
 - $\chi = e^{|y_1 y_2|}$
- χ distribution categorized in ${\rm m}_{\ell\ell}$ bins to enhance sensitivity
- Presence of new physiscs would show up as an excess of events at low χ values

Di-Jet χ - Interpretations

The results are interpreted in different frameworks by the two experiments

- CMS: Limits are put on the invariant mass of vector or axial-vector DM mediators considering a coupling with quarks $g_{\rm q}=1$
 - Resonances with mass between 2 TeV and 4.6 TeV are ruled out
- ATLAS: Contact interactions characterized by a single energy scale Λ are considered
 - Values of Λ up to 21 TeV in case of constructive interference with QCD, and up to 13 TeV in case of destructive interference with QCD are excluded

Putting Everything Together

Putting all the results of the different searches together

- Exclusion mainly driven by di-jet analyses
 - Sensitivity recovered by dedicated low-mass searches
- Coupling of the mediator with leptons (g_{ℓ}) set to 0
- References:
 - ATLAS: ATL-PHYS-PROC-2017-133
 - CMS: DM Summary Plots 2017

Putting Everything Together - Introducing Lepton Coupling

Introducing a non-zero coupling of the DM mediator with leptons the di-jet searches loose importance in favour of di-lepton analyses

- $\bullet\,$ In this case different values of g_ℓ for ATLAS and CMS
 - ATLAS: $g_{\ell} = 0.1$
 - CMS: $g_{\ell} = 0.01$
- $\bullet~$ Quark-mediator coupling $g_{\rm q}$ lowered from 0.25 to 0.1
- References:
 - ATLAS: ATL-PHYS-PROC-2017-133
 - CMS: DM Summary Plots 2017

Direct Detection Reinterpretation

The results are further re-interpreted in terms of DM-nucleon scattering

- Allows comparison with direct detection experiments
- Separated results present for spin-dependent ($\sigma^{\rm SD}$) and spin-independent interaction ($\sigma^{\rm SI}$)
- Need to fix couplings

-
$$g_{\rm q}$$
 = 0.25, $g_{\rm DM}$ = 1.0, g_ℓ = 0

Direct Detection Reinterpretation (2)

The results are further re-interpreted in terms of DM-nucleon scattering

- Allows comparison with direct detection experiments
- Separated results present for spin-dependent ($\sigma^{\rm SD}$) and spin-independent interaction ($\sigma^{\rm SI}$)
- Need to fix couplings

-
$$g_{\rm q}$$
 = 0.25, $g_{\rm DM}$ = 1.0, g_ℓ = 0

The searches for dark matter performed with the ATLAS and CMS detectors have been presented

- Signatures inspected
 - Production of dark matter in association with SM particles
 - Production of SM particles from decay of dark matter mediators
- No significant discrepancies with SM predictions observed
- Results are interpreted
 - As limits on DM mediators or stable particles masses
 - As limits on simplified models parameters
 - As limits on DM-nuclei interaction cross sections
- $\bullet\,$ Large part of the results exploits 2016 dataset ($\sim\,$ 36 fb^{-1})
 - Much higher statistics from 2017 and 2018 data taking

Mono-Jet - Direct Detection Re-Interpretation

The results are further re-interpreted to produce comparisons with direct detection experiments results

- Spin-independent scattering (left)
 - From vector results
 - Cross-sections larger than 10^{-42} cm² excluded
- Spin-dependent scattering (right)
 - From axial-vector results
 - Cross-sections larger than 10^{-43} cm² excluded

Mono- γ - Direct Detection Re-Interpretation

The results are further re-interpreted to produce comparisons with direct detection experiments results

- Spin-independent scattering (left)
 - From vector results
 - Crosssections larger than 10⁻⁴¹ cm² excluded
- Spin-dependent scattering (right)
 - From axial-vector results
 - Crosssections larger than 10⁻⁴³ cm² excluded

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Mono-Z - Additional Interpretations from CMS

CMS interpreted the results also in terms of scalar or pseudo-scalar mediators, and in terms of DM-necleus scattering cross-section

- No sensitivity to scalr or pseudo-scalar mediators (top)
- Spin-independent scattering (bottom-left)
 - $\sigma^{\rm SI}$ larger than $10^{-40}~{\rm cm}^2$ excluded
- Spin-dependent scattering (bottom-right)
 - $\sigma^{\rm SI}$ larger than 10^{-41} cm² excluded

Mono-Higgs - Direct Detection Re-Interpretations

For Z'-Baryonic model, the $\gamma\gamma$ and $\tau\tau$ results have been re-interpreted in the framework of direct-detection experiments

- Spin-independent interactions with nuclei are considered
 - Cross-sections larger than 10^{-41} cm² are excluded

