

System's Performances in BI

Volker Schramm on behalf of the BI group

Special thanks to:

David Belohrad, Enrico Bravin, Ewald Effinger, Rhodri Jones, Tom Levens, Patrick Odier, Georges Trad, William Viganò, Manfred Wendt, Christos Zamantzas

Volker Schramm BE-BI-BL volker.schramm@cern.ch

12/12/2017

Agenda

- AFT statistics 2017 & previous years
- Upgrades 2017 BCT, BPM, WS
- Faults analysis
- BI past and future efforts
- Conclusion

AFT statistics - 2017

Registered 22 BI faults in 2017 which account to 32h LHC downtime

AFT statistics – previous years

- BI availability increased for the 2nd year in a row (all systems!)
- 2017: Highest availability ever achieved for BPMs and BCTs
 - Strong positive trend since 2015 (consistent AFT recording since 2015)
- The BLM normalized downtime is almost constant during 2016 and 2017

Focus on the performance of the BLM

*2017: 28/04 - 10/11

Upgrades 2017 – BCT, BPM, WS

> DCCT:

- → Software optimisation to eliminate issues with calibration & flickering of safe beam flag
- → System B front end electronic modification to reduce noise level by a factor of 3 (system A to be done YETS 17-18)
- ➢ FBCT: → New digital acquisition system with enhanced measurement precision which improves the instrument availability

> BPM:

- → Continuous analysis of "dancing BPMs" with interventions during TS to change front-end cards
 - \rightarrow New rack monitoring system put in place
- > Wire Scanner: \rightarrow Split of B1 & B2 electronics
 - \rightarrow Architecture change from LynxOS to Linux

Faults Analysis - BLM

2017 Issue % downtime % # SEU (surface) 04h 40m 22% 15% 4 07h 47m 25% VME Power Supply Fail 1 6% Connection Lost: FESA/VME/CPU 6% 00h 04m 0% 1 **HV Power Supply Drop HV Power Supply Noise** Sanity Error: Communication/VME 4 22% 01h 23m 5% Sanity Error: IC 2% 1 6% 00h 29m Sanity Error: LIC Sanity Error: SEM 3 17% 13h 54m 46% 02h 13m **BLECF** optical link issues 22% 7% 4 **BLETC** optical link issues Other optical link issues Other 18 1d 06h 32m

Detailed BLM faults in 2017:

Failed transformer

~50% Sanity Check related faults

Failed Connectivity Test

Faults Analysis - BLM

Detailed BLM faults of previous years: separate AFT & BI-BL accounting

- Throughout all years high number of Optical Link and Sanity Check related faults
- Own accounting helps to identify weak parts and to react earlier (e.g. Optical Link)

Issue		2012		15	20	16	2017		
	AFT*	Jira	AFT	Jira	AFT	Jira	AFT	Jira	
SEU (surface)	3	3	2	3	1	1	4	3	
VME Power Supply Fail	1	1					1	1	
Connection Lost: FESA/VME/CPU	5	6	7	7	1	1	1	2	
HV Power Supply Drop		4		1				1	
HV Power Supply Noise			3	5	2	2			
Sanity Error: Communication/VME	3	9	6	20	2	3	4	6	
Sanity Error: IC		3	1	5			1	3	
Sanity Error: LIC		6		1					
Sanity Error: SEM	5	10	5	8	4	4	3	4	
BLECF optical link issues	1	7				2	4	7	
BLETC optical link issues	3	11	1	1	4	9		7	
Other optical link issues	2	10		12				1	
Other	2		2		2				
	25	70	27	63	16	22	18	35	
	1d 12	h 28m	2d 15	h 16m	1d 12	h 36m	1d 06h 32m		

3 main fault cases:

- Power supplies:Constant low failure rate
- SEMs (at the dump):Constant high failure rate
- > Optical links:

Decreased, then in Run2 constant low failure rate

*No consistent AFT recording (Run1)

Faults Analysis – 1 example

2 BLM failures within 30 hours this August:

- System fault detected before it can lead to a dump (function fulfilled)
- *L*_{loss}? → 'Equivalent to 5hours of scheduled operation'

- Fault lead to unscheduled beam dump (false dump)
- *L*_{loss}? → 'Equivalent to >>4min
 of scheduled operation' ?
- How to quantify the luminosity loss?
- How to scale availability and luminosity?

Faults Analysis – 1 example

Example of two 12-hour fills as intended and the same scenario with a fault in the first fill:

By using intensities of a typical 12h13min fill at 6.5 TeV [03/09/2017,4:17am] as well as $t_{turnaround} = 6.2h$ the integrated area below the fills is **≥14%** bigger for the 1st scenario

Past Efforts – LHC BLM

- **2005** > Dependability analysis:
 - Prediction
 - \circ FMECA
 - o FTA
 - o Sensitivity Analysis
- 2008 > Redesign of the backend mezzanine
- 2012 > Preventive system fault analysis
 - Daily automatic mails
 Jira failure logging
- **2013** \succ 1st big maintenance intervention:

	0		
0	Preventive exchanges:	Cables. detectors.	cards. fans

- Acquisition electronics modification & recalibration
- Clean-up: Optical adaptors, connectors
- Shuffle of optical links & firmware modification
- **2017** > Dependability analysis update (PhD)

DAB64>

(LS1)

Gianluca Guaglio, PhD thesis, 2005

					\mathbf{CR}	C_COMP	LK	1 Err	LK	2 Err	LK1	Lost	LK	2 Lost	\mathbf{FII}	D_COMP
Card	CF Se	r	TC Ser	CS Ser	Α	в	Α	в	Α	в	Α	в	Α	в	Α	в
2.L.1	0371	0328	16429131501618539521	17437937815547463425	0	0	0	0	0	0	42	0	0	0	0	0
3.R.14	0492	0488	10664523978582786561	16861477063165457409	0	0	0	0	0	0	0	0	0	1	0	0
4.L.6	0642	0591	10736581572621763841	14267403677825781249	1	0	1	0	0	0	0	0	0	0	0	0
7.C.5	0803	0682	9151314503787382017	7854277808467274753	0	0	0	0	0	0	0	0	1	0	0	0

Optical link errors

Future Efforts – LHC BLM

Ongoing PhD to study and improve the LHC BLM system. Results will also be projected to enhance the injector's upgrade and the new VFC processing card

Future Efforts – DAB64x upgrade

Post LS2 upgrade of the surface processing electronics. The DAB64x and mezzanine will be replaced by the new VFC:

- Additional functionalities with an increased FPGA size
 - Possible to facilitate different processing
 - Improvement of the most critical part of the code using redundancies
- Mezzanine replacement by an SFP standard connector

Future Efforts – Testing

Component tests (1)

Reliability tester of VFC power supplies

Functional tests (2)

Functional tester VFC card

Burn-In/Reliability tests (3)

Climatic chamber

Model: BINDER MKF 240 Rapid temperature changes with humidity control -40 °C to 180 °C Temperature range:

Humidity range:

10 % to 98 % RH

Future Efforts – Sanity Check

Optimising the Sanity Check sequence:

- Merge 5 sequence steps into 4
- Enable to perform checks of only 1 group → Up to 75% time saving
- Upgrades of the code in the long term

Beam monitor												
Accelerator N	lode:					Beam 1 Pres	sent:					
Beam Mode:		Beam 2 Present:										
					Global Status							
		Che	ck being	run at th	e momen	t 06.12.2	017 10:47	7:07				
	Checks MCS	connected	to BIS Checks	Expert checks								
	MC 3	Samy										
Crates	Consistency	Connectivity	Internal Beam Permit	CFC TEST	RST DAC	RST GOH	RST FPGA	STOP HV	MANUAL CTR	External Roam Dormit		
SR1.L	consistency	connectivity	Deam Permit	GIG_ILJI	NOT_DAC	1001	IGT_IFUA	STOP_IN	MANGAL_CIN	Doum Permit		
SR1.L SR1.C												
SR1.R												
SR2.L												
SR2.C												
SR2.R												
SR2.I												
SR3.L												
SR3.C												
SR3.R												
SX4.L												
SX4.C												
SX4.R SR5.L												
SR5.C												
SR5.R												
SR6.L												
SR6.C												
SR6.R												
SR7.L												
SR7.C												
SR7.R												
SR7.E												
SR8.L												
SR8.C												
SR8.R												
SR8.I												

→ 20% time saving

Checks sequence:

- 1. Each point center crate
- 2. Each point left crate
- 3. Each point right crate
- 4. Injection crate
- 5. Extra crate in point 7

\rightarrow Merge steps 4 and 5

Future Efforts – Dump Upgrade

6 new detectors to be installed outside of the dump for both dump regions:

- Exact positions have been defined with ABT
- Radiation tolerant cabling to be added locally

Conclusion

- In 2017 a <u>better availability</u> was achieved than in previous years
 - Very strong performance of BCTs and BPMs
 - Future efforts need to focus on the BLM which contributed >90% of BI downtime
- Various measures are put in place:
 - Constant maintenance and exchange of less reliable systems
 - Preventive system fault analysis & failure logging
 - System upgrades which include:

- Functional tests before installation
- Component reliability testing
- System burn-in/reliability testing
- To measure system performance both the availability and the luminosity impact of a fault needs to be considered

Thank you for your attention

www.cern.ch

Calculation of the ~ 14% reduced luminosity:

•
$$\mathcal{L}_{loss} = 2A - (A + B + C) = A - B - C$$

•
$$t_{total} = 2 * 12h + 2 * 6.2h = 36.4h$$

•
$$t_C = 36.6h - 12h - 2.5 * 6.2h - t_B \rightarrow t_B + t_C = 9.1h \rightarrow \text{Highest } \mathcal{L} \text{ for } t_B = t_C = 4.55h$$

•
$$A = \frac{0.46h*1.68e14p}{2} + 11.75h*1.24e14p + \frac{11.75h*0.44e14p}{2} = 17.55e14h*p$$

•
$$B = C = \frac{0.46h + 1.68e14p}{2} + 4.08h + 1.24e14p + \frac{4.08h + 0.44e14p}{2} = 6.35e14h + p$$

• (1)
$$2A = 35.1e14$$
 (2) $A + B + C = 30.24e14$

$$* "\mathcal{L}_{loss}" = 4.85e14 \qquad \approx 14\%$$

Example of a 12-hour fill at 6.5 eV:

Methodology PCB design:

Dump Region with BLM:

Courtesy C. Wiesner, W. Bartmann

