
A users view on exploiting the control system in MDs

G. Iadarola with input from:

G. Arduini, T. Argyropoulos, V. Baggiolini, H. Bartosik, R. De Maria,

J. Gonzalez Cobas, K. Fuchsberger, M. Hostettler, T. Levens,

E. Metral, T. Persson, R. Tomas, M. Solfaroli Camillocci,

G. Sterbini, J. Wenninger

8th Evian Workshop - December 2017

Focusing on two types of activity

Extraction and analysis of data
from the logging service (CALS)

Interaction with LHC
equipment

Introduction

But this does not work efficiently when the analysis needs to interact with the data extraction…

1. Extract the data from Logging
System and store on local drive
(e.g. using Timber)

Analysis of logged data: the “classical paradigm”

2. Parse downloaded file

3. Perform “the analysis” (data
manipulation, correlations,
plotting, etc.)

A practical example: analysis of Xing angle anti-leveling

• For all physics fills in 2017 we want to know:

o After how much time in Stable Beams (SB) the first angle reduction was applied

o By how much was the crossing angle changed

o What was the average bunch intensity at the moment of the change

• With the approach described before we would need to download and store the
required data for the entire run, parse the files, do the processing >1 day of work

• For all physics fills in 2017 we want to know:

o After how much time in Stable Beams (SB) the first angle reduction was applied

o By how much was the crossing angle changed

o What was the average bunch intensity at the moment of the change

• With the approach described before we would need to download and store the
required data for the entire run, parse the files, do the processing >1 day of work

• Of course this can be made much more efficient with an intelligent data retrieval

A practical example: analysis of Xing angle anti-leveling

For all fills of the 2017 p-p run:
- Download beam modes info
- Check if SB declared (if not skip fill)
- Get start-end of SB timestamps
- Get crossing angle at start SB
- Get crossing angle during SB
- Identify time of first step (tstep)
- Save Xing angle before and after tstep

- Extract beam intensity at tstep

- Extract number of bunches
- Compute average bunch intensity
- Save average bunch intensity at tstep

A possible algorithm
combining data retrieval
and with some logics

A lot less data:
download one
intensity point per fill
instead of the full run!

But this cannot be
done with Timber…

• For all physics fills in 2017 we want to know:

o After how much time in Stable Beams (SB) the first angle reduction was applied

o By how much was the crossing angle changed

o What was the average bunch intensity at the moment of the change

• With the approach described before we would need to download and store the
required data for the entire run, parse the files, do the processing >1 day of work

• Of course this can be made much more efficient with an intelligent data retrieval

A practical example: analysis of Xing angle anti-leveling

For all fills of the 2017 p-p run:
- Download beam modes info
- Check if SB declared (if not skip fill)
- Get start-end of SB timestamps
- Get crossing angle at start SB
- Get crossing angle during SB
- Identify time of first step (tstep)
- Save Xing angle before and after tstep

- Extract beam intensity at tstep

- Extract number of bunches
- Compute average bunch intensity
- Save average bunch intensity at tstep

A possible algorithm
combining data retrieval
and with some logics

• The conventional/supported way of interacting with the logging system with full flexibility
is to use the Java API (Application Program Interface) provided by BE-CO

• Unfortunately Java is not part of the background for the average physicist and has a quite
long learning curve…

A lot less data:
download one
intensity point per fill
instead of the full run!

But this cannot be
done with Timber…

• Very fast learning curve

• Simple, flexible, and concise development generally
faster than with other languages: ideal for quick
prototyping, testing new ideas

• Prone to interactive development

• Used and supported by a large community (if you have a
question, you just have to write it on google)

• It comes with solid and complete set of tools for
numerical analysis and plotting (numpy, scipy, matplolib,
pandas)

public class HelloWorld
{
public static void main(String[] args)
{

System.out.println("Hello, World!");
}

}

print "Hello, World!"

An interesting middle ground: Python

Python is an open-source general-purpose language and is a very popular choice for
scientific computing (e.g. data analysis, calculations, numerical simulations)

 In fact many of us are already using it

“Hello world” in Java “Hello world” in Python

Users developed a python module (PyTimber) to access the logging via python

 Proved to be very handy as many of us are already using python for data
analysis, simulations etc.

It is a python wrapper of the CALS Java API (made using Jpype)

• Hides most of the “java technicalities” providing a user-friendly but scriptable
interface

• Started like a “personal” project, it spread very fast (>100 users across CERN) and
further evolved by community development (based on GitHub)

• Made available and regularly used within the SWAN environment, developed by
the LHC experiment for interactive data analysis using cloud computing
resources (you can do everything in your web browser)

Authors: R. De Maria, T. Levens, C. Hernalsteens, M. Betz, M. Fitterer, R. Castellotti

PyTimber

For more info: github repository

import pytimber, pylab
ldb = pytimber.LoggingDB()

data = pytimber.DataQuery(ldb,
["ATLAS:LUMI_TOT_INST","CMS:LUMI_TOT_INST"],
"2017-11-02 14:00:00", “2017-11-0308:00:00”)

data.plot_2d()

pylab.show()

Example: download and plot LHC luminosities

https://github.com/rdemaria/pytimber
http://jpype.sourceforge.net/
https://swan.web.cern.ch/
https://github.com/rdemaria/pytimber

for filln in xrange(first_fill, last_fill):

fill_data = ldb.getLHCFillData(filln)
bmode_dict = build_dict_bmodes(fill_data)

if 'STABLE' not in bmode_dict.keys():
print 'No stable beams'; continue

t_start_stable = bmode_dict['STABLE']['startTime'][0]
t_end_stable = bmode_dict['STABLE']['endTime'][0]

ang_var_start = ldb.get([ang_varname],
t1 = t_start_stable , t2 = 'last')

ang_var_duringSB = ldb.get([ang_varname],
t1 = t_start_stable, t2 = t_end_stable)

if len(ang_var_duringSB[ang_varname][0])==0:
print 'No crossing change'; continue

t_1st_change = ang_var_duringSB[ang_varname][0][0]
t_1st_change_h_list.append((t_1st_change - t_start_stable)/3600.)

ang_1st_change_list.append(ang_var_duringSB[ang_varname][1][0])
ang_start_fill_list.append(ang_var_start[ang_varname][1][0])

inten_vars_start_SB = ldb.get([intenB1_varname, intenB2_varname,
nbunB1_varname, nbunB2_varname],
t1 = t_start_stable, t2 = 'last')

inten_vars_at_change = ldb.get([intenB1_varname, intenB2_varname],
t1 = t_1st_change, t2 = 'last')

avg_bint_start_SB = inten_vars_start_SB[intenB1_varname][1][0]\
/inten_vars_start_SB[nbunB1_varname][1][0]

avg_bint_at_change = inten_vars_at_change[intenB1_varname][1][0]\
/inten_vars_start_SB[nbunB1_varname][1][0]

avg_bint_start_SB_list.append(avg_bint_start_SB)
avg_bint_at_change_list.append(avg_bint_at_change)
nbun_list.append(inten_vars_start_SB[nbunB1_varname][1][0])
filln_list.append(filln)

Xing angle example: PyTimber implementation

With PyTimber these 11
steps can be implemented in
~30 lines of python 

For all fills of the 2017 p-p run:
- Download beam modes info
- Check if SB declared (if not

skip fill)
- Get start-end of SB

timestamps
- Get crossing angle at start SB
- Get crossing angle during SB
- Identify time of first step (tstep)
- Save Xing angle before and

after tstep

- Extract beam intensity at tstep

- Extract number of bunches
- Compute average bunch

intensity
- Save average bunch intensity

at tstep

for filln in xrange(first_fill, last_fill):

fill_data = ldb.getLHCFillData(filln)
bmode_dict = build_dict_bmodes(fill_data)

if 'STABLE' not in bmode_dict.keys():
print 'No stable beams'; continue

t_start_stable = bmode_dict['STABLE']['startTime'][0]
t_end_stable = bmode_dict['STABLE']['endTime'][0]

ang_var_start = ldb.get([ang_varname],
t1 = t_start_stable , t2 = 'last')

ang_var_duringSB = ldb.get([ang_varname],
t1 = t_start_stable, t2 = t_end_stable)

if len(ang_var_duringSB[ang_varname][0])==0:
print 'No crossing change'; continue

t_1st_change = ang_var_duringSB[ang_varname][0][0]
t_1st_change_h_list.append((t_1st_change - t_start_stable)/3600.)

ang_1st_change_list.append(ang_var_duringSB[ang_varname][1][0])
ang_start_fill_list.append(ang_var_start[ang_varname][1][0])

inten_vars_start_SB = ldb.get([intenB1_varname, intenB2_varname,
nbunB1_varname, nbunB2_varname],
t1 = t_start_stable, t2 = 'last')

inten_vars_at_change = ldb.get([intenB1_varname, intenB2_varname],
t1 = t_1st_change, t2 = 'last')

avg_bint_start_SB = inten_vars_start_SB[intenB1_varname][1][0]\
/inten_vars_start_SB[nbunB1_varname][1][0]

avg_bint_at_change = inten_vars_at_change[intenB1_varname][1][0]\
/inten_vars_start_SB[nbunB1_varname][1][0]

avg_bint_start_SB_list.append(avg_bint_start_SB)
avg_bint_at_change_list.append(avg_bint_at_change)
nbun_list.append(inten_vars_start_SB[nbunB1_varname][1][0])
filln_list.append(filln)

Xing angle example: PyTimber implementation

With PyTimber these 11
steps can be implemented in
~30 lines of python 

For all fills of the 2017 p-p run:
- Download beam modes info
- Check if SB declared (if not

skip fill)
- Get start-end of SB

timestamps
- Get crossing angle at start SB
- Get crossing angle during SB
- Identify time of first step (tstep)
- Save Xing angle before and

after tstep

- Extract beam intensity at tstep

- Extract number of bunches
- Compute average bunch

intensity
- Save average bunch intensity

at tstep

Code put together in ~1.5h
Execution time: 3.5 mins

The future of the Logging System: NXCALS

Features of the new system:

• Better horizontal scalability (good performance in spite of
growing size of stored data, >1 PB)

• Possibility of using “Big Data” toolset. Change of paradigm:

o User does not download data to his local machine but
sends analysis code to be executed directly by the
distributed storage/computing resources

• Present Java API will be maintained (present applications,
including PyTimber, will still work)

• Plus other and more advanced ways of interacting with the
system (python, jupyter, spark, swan…)

0

0.5

1
Stream of filtered data in TB/day

BE-CO presently working on full renovation of the
Logging System to fulfill growing needs:

 New NXCALS system is under development

 Based on Hadoop/Spark technology (open source,
leading players in the “Big Data” world)

 Migration of data from the present system and
analysis of all present use-cases are ongoing

 Message from the developers: “Give us more people, it
will be faster!" :-)

For more info: gitlab repository, wiki

https://gitlab.cern.ch/acc-logging-team/nxcals
https://wikis.cern.ch/display/NXCALS/NXCALS+Home

Focusing on two types of activity

Extraction and analysis of data
from the logging service (CALS)

Interaction with LHC
equipment

Introduction

Interaction with LHC equipment

Machine Studies often require interacting with LHC equipment, in particular when
using diagnostics from beam instrumentation, RF, etc.

 Often this is not only a passive observation of published data but requires
sending commands, settings, triggers …

More info on the different options available at: https://wikis.cern.ch/display/ST/Libraries+Available

The convectional way is to use the existing
applications (mostly written in Java), but this does
not cover many cases of interest for MDs, notably:

• Commissioning of new devices

• Experiments with unconventional usage of
existing devices

Several approaches adopted:

• Develop ad-hoc java applications (requires
time and expertise)

• Use scripting language:

 Tools have been developed to hide some
of the complexity and allow for more
agile development, common choices:
PyJAPC and Inspector

https://wikis.cern.ch/display/ST/Libraries+Available

• PyJAPC is a simplified python
interface to accelerator hardware
(e.g. FESA)

• Implementation makes use
of JPype to call functions of the
"Java API for Parameter Control"
(JAPC) directly from Python

• It can be used without knowing
anything about the underlying
JAPC API

• For more complex functionality it
is possible to manually call the
relevant JAPC functions from
Python

instantiate pyjapc object
import pyjapc
japc = pyjapc.PyJapc(selector="LHC.USER.ALL",

incaAcceleratorName="LHC", noSet=True)

RBAC login
japc.rbacLogin(loginDialog=True)

Get vector data from LHC BBQ
v = japc.getParam(
"LHC.BQ.ONDEMAND.B1/SummaryMeasurement#averageMagnitudeH")

plot
import numpy as np; import pylab as pl
xVect = np.linspace(0, 11e3/2, len(v), endpoint=False)
pl.plot(xVect/1e3, v, label=par)

RBAC Logout
japc.rbacLogout()

For more info: documentation, wikis, gitlab repositoryAuthors: M. Betz, T. Levens

PyJAPC

Example: plot BBQ spectrum

https://github.com/tcalmant/jpype-py3/
https://wikis.cern.ch/display/JAPC/Home
http://bewww/~bdisoft/pyjapc/index.html
https://wikis.cern.ch/display/ST/PyJapc
https://gitlab.cern.ch/scripting-tools/pyjapc

• Under the hood of many familiar CCC windows

PyJAPC

Measurement setup via Python script (no GUI)

Inspector

For more info: wiki

• Tool for the development of control applications using
graphical programming

• Based on java API (JAPC)

• Allows fast development of Graphical User Interfaces (GUIs)
and displays

• Used for several expert interfaces and MD tools

Authors: B. Lefort et al.

https://wikis.cern.ch/display/INSP/Inspector+Home

PjLSA

A lot of useful information stored in the LSA database (functions, trim history,
knob definitions)

• “Conventional” access via operational applications (e.g. LHC Trim) or through
the Java API (only within the Technical Network)

• Recently a python wrapper (via Jpype) has been developed  PjLSA

o Only read functions available for now

o Accessible also from the General Purpose Network (GPN) within CERN

o Can be easily combined with PyTIMBER and PyJAPC obtaining a
complete scriptable toolbox for machine studies

For more info: github repository

In the injectors similar tools are used also
to automatically send settings and
perform automatic scans

 What is the potential for the LHC?

Example: Optimization of transverse

excitation for PS multi-turn extraction

G. Sterbini

Authors: R. De Maria, M. Hostettler, V. Baggiolini

https://github.com/rdemaria/pjlsa

From MD and expert tools to more general usage

See for example D. Jacquet at Evian 2016

Many of the tools developed for Machine Studies and commissioning of new
equipment have potential to become useful in the LHC daily life

 Common perception that that this should be further pursued

https://indico.cern.ch/event/578001/timetable/#20161213.detailed

From MD and expert tools to more general usage

Many of the tools developed for Machine Studies and commissioning of new
equipment have potential to become useful in the LHC daily life

 Common perception that that this should be further pursued

What can we practically do to facilitate this process?

From the BE-CO and BE-OP:

• Guidelines and feedback on how to develop
and maintain (semi-)operational tools within
the LHC software ecosystem

• Accept the python invasion: this is already
happening to some extent (see next slide)

• An agile way to develop Graphical User
Interfaces (GUIs), e.g. inspector-like

From the MD/equipment groups:

• Code written respecting basic programming
good practices (a basic training course is
often a very good investment )

• Understand and respect guidelines defined
above

• Minimal commitment for maintenance and
support

Example: Linear Coupling Measurement

(ABP/RF development embedded in OP application)

Evolution of python support

Until recently python not officially supported by BE-CO (e.g. no official python
installation available in Technical Network) 

Some infrastructure built by the users themselves:

• Different python installations available in AFS/NSF user public folders (e.g. BI install.)

• For python tools based on java APIs (pytimber, pyjapc, pjlsa) CommonBuild
Dependency Manager has been developed (by T. Levens) to automatically identify
java dependencies, downloads required jars, and setup the required Java Virtual
Machine (JVM) within python

Growing interest and support from BE-CO in the latest period :

• Python usage (via web-server) supported in the new CommonBuild (CBNG)
developed by BE-CO-APS

• Contribution in the development of PjLSA

• Setup of the Python Focus Group (chaired by J. Gonzales Cobas), first objectives:

o Provide a common forum for python

o Setup supported python installation(s) in the Technical Network (based on LHC
Computing Grid)  should be available for the 2018 run

o Setup basic environment for deployment and maintenance of python
applications

https://wikis.cern.ch/display/ST/Libraries+Available
https://gitlab.cern.ch/scripting-tools/cmmnbuild-dep-manager
https://wikis.cern.ch/display/DVTLS/CBNG+Web+service
https://wikis.cern.ch/display/DVTLS/CBNG#CBNG-Wheretostart
python-focus-group@cern.ch

Summary

• Several solutions developed by the MD community to fully exploit the potential
of the LHC hardware and control system in a flexible and experimental way

• In particular, we start having a complete and powerful python toolbox (PyTimber,
PyJPAC, PjLSA, PyLogbook) developed collaboratively across different teams

 Interact with logging, LSA, LHC hardware and perform advanced data analysis
all in the same environment

 We have only scratched the surface of the potential behind that

• Tools developed for equipment commissioning and Machine Studies can evolve
and prosper the LHC software ecosystem…

…if we work together to make it happen!

Thanks for your attention!

