

Active doping profile using Transmission Line Matrix method

A. Lounis*, E. Gkougkoussis¹, T. Rashid**, S. Zacharias*** Jean Luc Perrossier², J.R coudeyville², C. Villebasse²,

Basics of TLM The methodology Results of doping profile Conclusions

* Université de Paris-Sud XI, Laboratoire de l'Accélérateur Linéaire
** Phd student Université de Paris-sud XI, Orsay
*** Master 1 Student, Université de Paris Sud XI-Orsay
¹ CNM Barcelona

² Institut Electronique Fondamentale, Orsay

What is the TLM method?

TLM method (Transmission Line Matrix method) based on measuring the resistance of doped silicon layers at depths increasing incrementally in the implanted area.

Doping profile measurement

This method consists in .

Measuring sheet resistances by TLM
Perform incremental depth steps in the implanted zone
Use Reactive Ionic etching

The Method

In measuring resistance with the four point probe or Van der Pauw methods, Four contacts are used (2 for I, 2 for V) to determine the sheet resistance of a layer while minimizing effects of contact resistance.

Two contacts are located at the ends of the bar and each has a contact area Ac. The measured total resistance consists of several components.

$$R_{T} = 2R_{m} + 2R_{c} + R_{semi}$$

 R_m is the contact resistance, R_C is the metal/Semiconductor, R_{semi} is the semiconductor Resistance; $R_m << R_c$

The semi conductor resistance is explained as: $R_T = 2 R_c + R_{semi}$

Sheet resistance of the semiconductor

In regular 3D resistance (current along the L arrow), the resistance : $R = \rho \frac{L}{A} = \rho \frac{L}{Wt}$,

where ρ is the resistivity, **A** is the cross-sectional area, and **L** is the length. The cross-sectional area can be split into the width **w** and the sheet thickness **t**. We can this write the resistance as :

$$R = \frac{\rho}{t} \frac{L}{W} = R_{\rm s} \frac{L}{W},$$

where \mathbf{R}_{s} is the sheet resistance. If the film thickness **t** is known, the bulk Resistivity ρ (in Ohm·cm) can be calculated by multiplying the sheet resistance by the film thickness in cm:

$$\rho = R_s \cdot t.$$

Sheet resistance

For semiconductors doped through diffusion or surface peaked ion implantation we define the sheet resistance using the average resistivity of the material.

$$R_{\rm s} = \overline{\rho} / x_{\rm j} = (\overline{\sigma} x_{\rm j})^{-1} = \frac{1}{\int_0^{x_{\rm j}} \sigma(x) \, dx}$$

which in materials with majority-carrier properties can be approximated by:

$$R_{\rm s} = \frac{1}{\int_0^{x_{\rm j}} \mu q N(x) \, dx},$$

Where x_j is the junction depth, μ is the majority-carrier mobility, q is the carrier charge, and N(x) is the net impurity concentration.

Implanted sample

Sample before implantation

Photoresist coating/coating resin S1813 / 4000 rpm / 30s

- •Implanted sample
- Photoresist coating
- photoresist opening
- •Wet etching
- •Al deposition
- •Al Lift Off
- •Profile measurement
- •I-V measurement
- •Reactive Ion Etching

n fois

 $n \ge t / 200nm$ Time $\ge n x 7 mn$

Photoresist opening

- •I-V measurement
- •Reactive Ion Etching

n fois

 $n \ge t / 200nm$ Time $\ge n \times 7 mn$

Aluminium deposition : 300nm , Plassys

Implanted sample

- Photoresist coating
- photoresist opening
- •Wet etching
- •Al deposition
- •Al Lift Off
- •Profile measurement
- •I-V measurement
- •Reactive Ion Etching

N times

 $n \ge t / 200nm$ Time $\ge n \times 7 mn$

Aluminium Lift Off

- •Implanted sample
- Photoresist coating
- photoresist opening
- •Wet etching
- •Al deposition

•Al Lift Off

- •Profile measurement
- •I-V measurement
- •Reactive Ion Etching

n times

.....

 $n \ge t / 200nm$ Time $\ge n \ge 7 mn$

Engraving Zone Si* doped

- •Implanted sample
- Photoresist coating
- photoresist opening
- •Wet etching
- •Al deposition
- •Al Lift Off
- •Profile measurement
- •I-V measurement
- •Reactive Ion Etching

n times

*gravure RIE J-R. Coudevylle/X. Le Roux

 $n \ge t / 200nm$ Time $\ge n \times 7 mn$

Engraving of Si*

- •Implanted sample
- Photoresist coating
- photoresist opening
- •Wet etching
- •Al deposition
- •<u>Al Lift Off</u>
- •Profile measurement
- •I-V measurement
- •Reactive Ion Etching

n times

n >= t / 200nm Time ≥ n x 7 mn Thanks of J-R. Coudevylle/X. Le Roux

ABDENOUR LOUNIS, RD50 CERN, 20 NOVEMBER 2017

TLM method

 R_c : ohmic contact resistance of aluminium/silicon surface R_l : resistance of the layer between 2 contacts separeted by a distance of l

TLM samples geometry & layout

Four wafers with special geometry have been produced in CNM, with both Phosphorus and Boron implantation:

Wafer #	Implantation Ion	Implantation Dose	Expected Peak Concentration
Wafer 1	Phosphorus	1e14 atom/cm ²	1.5e18 atom/cm ³
Wafer 2	Phosphorus	1e15 atom/cm ²	1.5e19 atom/cm ³
Wafer 3	Boron	1e14 atom/cm ²	1.3e18 atom/cm ³
Wafer 4	Boon	1e15 atom/cm ²	1.3e19 atom/cm ³

Wafer				Implanta	ation			Annealing		
#	Туре	Resistivity	Thickness	Oxide	lon	Energy	Dosis	Temperature	Time	Ambient
		(Ω.cm)	(um)	(nm)		(keV)	(at/cm^2)	(ºC)	(min)	
9877-DET-1	Р	0,1-1,4	525	100	Р	130	1,0E+14	1000	180	N2
9877-DET-2	P	0,1-1,4	525	100	Р	130	1,0E+15	1000	180	N2
9877-DET-3	Ν	1-12	525	100	В	60	1,0E+14	1000	180	N2
9877-DET-4	N	1-12	525	100	В	60	1,0E+15	1000	180	N2

W=1000um

25um 50um

60um

30um

75um ...

Samples characteristics

-Wafer $1 \rightarrow 1.5x10^{18} atoms/cm^3$ (P type) -Wafer $2 \rightarrow 1.5x10^{19} atoms/cm^3$ (P type) -Wafer $3 \rightarrow 1.3x10^{18} atoms/cm^3$ (N type) -Wafer $4 \rightarrow 1.3x10^{19} atoms/cm^3$ (N type)

From Guido Pelligrini

120um ..

Mask •W>>L (w/L ~ 2-3)

•L_{*i*}>t

Layout on a 10mm square piece of silicon

Test structure layout

Illustration of the different operational steps

Dry etching process.

- Use chemically reactive plasma to remove material depsited on wafers (Silicon in our case).
- The plasma is generated under low pressure (vacuum): typical process pressure = 10^-5 mbar.
- Plasma density: 1 5 x 10⁹ / cm2.
- High energy ions from the plasma attack the wafer surface and react with it , typical energy ~ 30 eV.
- The etching process of Silicon is a Fluoride base process, so both CHF3 and SF6 gases were used.
- Pre-etching cleaning of the sample, a factory plasma with O2 is used.

Profilometer

Etching

IV-curves

11

Profilometer

Check the distance between Alu Pads Measure the Etched depth

R LOUNIS, RD50 CERN, 20 NOVEMBER 2017

TLM measurement

Measured Current as function of bias Voltage of a sample from wafer # 4 at different spacing between contacts.

TLM measurement

10

Measured Resistance as a function of contact spacing distance of a sample from wafer # 4.

	Wafer 2 (atom/ cm^3)	Wafer 3 (atom/ cm^3)	Wafer 4 (atom/ cm^3)
Expected peak concentration	$1.5x10^{19}$	$1.5x10^{18}$	$1.3x10^{19}$
Measured peak concentration	$1.9x10^{19} + 1x10^{18} \qquad 3$	$3.5x10^{18} + 1x10^{17}$	$2.0x10^{19} + 2x10^{18}$

Resistance versus contact distance

Peak concentration after irradiation could be deduced form the measurements Some TLM samples have been irradiated at Lubjana $2x10^{15}$ Neq/cm² and $2x10^{16}$

Resistance Measurements

Measured Resistance as a function of contact spacing distance of (non and) Irradiated sample for different etching steps.

DE L'ACCÉLÉRATEUR

LINÉAIRE

From Resistivity profile to Concentration profile

13

Resistivity of doped silicon at different depth have been found using TLM Method.
 Carrier concentration has been calculated

□Active dopant profile has been extracted.

^DMeasured peak concentration was found to be of order 1e19 atom.cm⁻³ and is in a good agreement with expected value provided by manufacturer.

What is the total doping concentration and how does it compare with Active doping profile?

Secondary Ion Mass Spectrometry (SIMS)

• General characteristics of sims

- Analytical technique to *characterize the impurities in the surface and near surface (~30 µm) region* of solids (e.g. semiconductors) or some liquids;

– It relies on the sputtering of a *primary energetic ion beam (0.5-20 keV*) on the surface sample and the analysis of the produced ionized secondary particles by mass spectrometry;

- It has good detection sensitivity for many elements: <u>*it can detect dopant densities as low as*</u> 10^{14} cm⁻³;

- It allows simultaneous detection of different elements, <u>has a depth resolution of 1 to 5 nm</u> and can give a lateral surface characterization on a scale of several microns;

- It is a destructive method, since the act of the removing material by sputtering leaves a crater in a sample;

- It determines the *total dopant density profile* and not the electrically active impurity density (e.g. electrical methods as spreading resistance profiling, TLM, Hall effect etc..).

Secondary Ion Mass Spectrometry (SIMS)

SIMS is an analysis method measuring the secondary ions ejected from a sample surface when bombarded by a primary beam

further on SIMS Imaging Method

What is SIMS imaging?

- Allow a scan for the samples surface and depth.
- Depth profiling and imaging can be combined to yield very powerful threedimensional dopant maps

- Can achieve lateral resolutions up to 5 µm.
- ✓ High surface sensitivity at ppb level can be reached.
- Sample preparation is rather simple.
- ✓ Equivalent measuring time with standard 1D SiMS.

32

Phosphorus Implant 3D SIMS Doping Map

• SIMS of ADVACAM Planar pixel .

Comparison of TLM active doping profile at different fluences and total concentration using SIMS

ABDENOUR LOUNIS, RD50 CERN, 20 NOVEMBER 2017

INÉAI

Conclusions and prospects

- TLM method seems to be a promising method to measure active dopant concentration.
- Preliminary results shows that the measured peak concentration of active carriers using TLM Method is in a good agreement with expected value from the foundry producer (CNM),
- Measurements using TLM and SIMS methods, for N type Silicon has been compared and behave as predicted,
- Several samples from different wafers have been sent to be irradiated with Neutrons (Ljubljana) to fluences $(2x10^{15} n_{eq}/cm^2 \text{ and } 2x10^{16} n_{eq}/cm^2)$). Changing of active dopant profile before and after irradiation have been investigated.
- Loss of active carriers as function of depth are clearly seen and could be evaluated from the measurements

Next actions :

- Phosphorous P-Type case should be investigated using the same TLM method
- Study proton irradiation at high fluences
- Quantitative active doping concentration from TeraHertz method (non destructive) or SPR can be cross-checked with TLM
- Active doping profile with TLM can be usefully used in TCAD simulations (reliability of TCAD framework)

2015-04-RD50 Project LAL Implication Proposed Actions

Method	Туре	Process Step	Cost	Timeline		
TLM	Active dopant profile estimation	Design and mask production	1200€			
		N-type, Fz Silicon, 3kOh wafers	300€			
		Implantation: 1e15 / 5e14 / 5e15	330€	2.5 months		
		Wafer Processing	285€			
		Dicing and Expedition	150€			
		Measuring	500€	6 months		
Total:			3000€			