Active doping profile using Transmission Line Matrix method
A. Lounis*, E. Gkougkoussis ${ }^{1}$, T. Rashid**, S. Zacharias ${ }^{* * *}$ Jean Luc Perrossier ${ }^{2}$, J.R coudeyville ${ }^{2}$, C. Villebasse ${ }^{2}$,

Basics of TLM The methodology Results of doping profile Conclusions

* Université de Paris-Sud XI, Laboratoire de l'Accélérateur Linéaire
** Phd student Université de Paris-sud XI, Orsay
${ }^{* * *}$ Master 1 Student, Université de Paris Sud XI-Orsay
${ }^{1}$ CNM Barcelona
${ }^{2}$ Institut Electronique Fondamentale, Orsay

What is the TLM method?

TLM method (Transmission Line Matrix method) based on measuring the resistance of doped silicon layers at depths increasing incrementally in the implanted area.

$$
\boldsymbol{R}=\boldsymbol{\rho} \frac{\boldsymbol{L}}{\boldsymbol{A}} \longrightarrow \rho=\frac{1}{e N_{D} \mu_{e}} \longrightarrow \mathrm{~N}_{\mathrm{D}}
$$

Doping profile measurement

This method consists in :
$>$ Measuring sheet resistances by TLM
$>$ Perform incremental depth steps in the implanted zone
$>$ Use Reactive Ionic etching

The Method

In measuring resistance with the four point probe or Van der Pauw methods, Four contacts are used (2 for I, 2 for V) to determine the sheet resistance of a layer while minimizing effects of contact resistance.

Two contacts are located at the ends of the bar and each has a contact area Ac. The measured total resistance consists of several components:

$$
\mathrm{R}_{\mathrm{T}}=2 \mathrm{R}_{\mathrm{m}}+2 \mathrm{R}_{\mathrm{c}}+\mathrm{R}_{\mathrm{semi}}
$$

R_{m} is the contact resistance, R_{C} is the metal/Semiconductor, $R_{\text {semi }}$ is the semiconductor Resistance; $\mathrm{R}_{\mathrm{m}} \ll \mathrm{R}_{\mathrm{c}}$
The semi conductor resistance is explained as:

$$
R_{T}=2 R_{c}+R_{\text {semi }}
$$

Sheet resistance of the semiconductor

In regular 3D resistance (current along the L arrow), the resistance :

$$
R=\rho \frac{L}{A}=\rho \frac{L}{W t},
$$

where ρ is the resistivity, \mathbf{A} is the cross-sectional area, and L is the length. The cross-sectional area can be split into the width \mathbf{w} and the sheet thickness \mathbf{t}. We can this write the resistance as:

$$
R=\frac{\rho}{t} \frac{L}{W}=R_{\mathrm{s}} \frac{L}{W},
$$

where \mathbf{R}_{s} is the sheet resistance. If the film thickness \mathbf{t} is known, the bulk
Resistivity ρ (in Ohm $\cdot \mathrm{cm}$) can be calculated by multiplying the sheet resistance by the film thickness in cm:

$$
\rho=R_{s} \cdot t .
$$

Sheet resistance

For semiconductors doped through diffusion or surface peaked ion implantation we define the sheet resistance using the average resistivity of the material:

$$
R_{\mathrm{s}}=\bar{\rho} / x_{\mathrm{j}}=\left(\bar{\sigma} x_{\mathrm{j}}\right)^{-1}=\frac{1}{\int_{0}^{x_{\mathrm{j}}} \sigma(x) d x},
$$

which in materials with majority-carrier properties can be approximated by:

$$
R_{\mathrm{s}}=\frac{1}{\int_{0}^{x_{\mathrm{j}}} \mu q N(x) d x}
$$

Where x_{j} is the junction depth, μ is the majority-carrier mobility, q is the carrier charge, and $N(x)$ is the net impurity concentration.

Implanted sample

-Implanted sample
-Photoresist coating
-Photoresist opening
-Wet etching
-Al deposition

- Al Lift Off
-Profile measurement
-I-V measurement
-Reactive Ion Etching

Sample before implantation

Doped Zone
$t=1$ um
Doped Zone
$t=1$ um

Substrat Si: 380um
$\mathrm{n}>=\mathrm{t} / 200 \mathrm{~nm}$
Time $\geq \mathrm{n} \times 7 \mathrm{mn}$
n
times

Photoresist coating/coating resin S1813 / 4000 rpm / 30s

-Implanted sample
-Photoresist coating - photoresist opening
-Wet etching
-Al deposition

- Al Lift Off
-Profile measurement
\bullet - -V measurement
-Reactive Ion Etching
n fois

$\mathrm{n}>=\mathrm{t} / 200 \mathrm{~nm}$
Time $\geq \mathrm{n} \times 7 \mathrm{mn}$
-Implanted sample
-Photoresist coating -photoresist opening
-Wet etching
-Al deposition
- Al Lift Off
-Profile measurement
-I-V measurement
-Reactive Ion Etching
n fois
$\mathrm{n}>=\mathrm{t} / 200 \mathrm{~nm}$
Time $\geq \mathrm{n} \times 7 \mathrm{mn}$

Aluminium deposition : 300nm, Plassys

 (immediatly after cleaning and wet etching BHF 30-60s)-Implanted sample

-Profile measurement
-I-V measurement
-Reactive Ion Etching
$\mathrm{n}>=\mathrm{t} / 200 \mathrm{~nm}$
Time $\geq \mathrm{n} \times 7 \mathrm{mn}$

Aluminium Lift Off

-Implanted sample
-Photoresist coating

- photoresist opening
-Wet etching
-Al deposition
- Al Lift Off
-Profile measurement
\bullet - -V measurement
-Reactive Ion Etching

n times

Engraving Zone Si* doped

-Implanted sample
-Photoresist coating -photoresist opening
-Wet etching
-Al deposition
-Al Lift Off
-Profile measurement
$\bullet-V$ measurement
-Reactive Ion Etching

*gravure RIE J-R. Coudevylle/X. Le Roux
$\mathrm{n}>=\mathrm{t} / 200 \mathrm{~nm}$
Time $\geq \mathrm{n} \times 7 \mathrm{mn}$

Engraving of Si*

-Implanted sample
-Photoresist coating - photoresist opening
-Wet etching
-Al deposition
-Al Lift Off
-Profile measurement
$\bullet-V$ measurement
-Reactive Ion Etching

n times
$\mathrm{n}>=\mathrm{t} / 200 \mathrm{~nm}$

*Etching RIE
Thanks of J-R. Coudevylle/X. Le Roux

Time $\geq \mathrm{nx} 7 \mathrm{mn}$

Resistance in-depth measurement (TLM method) in trenches obtained by Reactive Ion Etching

$$
R=2 R_{c}+R_{1}=2 R_{c}+\rho_{1} \frac{L}{t_{1} W}
$$

Avant gravure: \mathbf{R}_{0}

Après 1ère gravure : \mathbf{R}_{1}

Example : etching steps of 200 nm in a sample with an implanted depth of $1 \mu \mathrm{~m}$

$$
\rho_{\text {so0-1000 }}=\frac{\left(R_{4}-2 R_{C}\right) R_{\text {sub }}}{R_{\text {sub }}-\left(R_{4}-2 R_{C}\right)} \frac{W}{L} 200
$$

TLM method

I-V measurements at one depth for different lengths

$R=f(L)$ at various depths

$$
\mathrm{R}=\mathrm{V} / \mathrm{I}
$$

$$
R=2 R_{c}+R_{1}=2 R_{c}+\rho_{1} \frac{L}{t_{1} W}
$$

R_{c} : ohmic contact resistance of aluminium/silicon surface R_{1} : resistance of the layer between 2 contacts separeted by a distance of I

TLM samples geometry \& layout

Four wafers with special geometry have been produced in CNM, with both Phosphorus and Boron implantation:
 Centre Nocional de Micnoelectròrica

Wafer \#	Implantation Ion	Implantation Dose	Expected Peak Concentration
Wafer 1	Phosphorus	1 e 14 atom $/ \mathrm{cm}^{2}$	1.5 e 18 atom $/ \mathrm{cm}^{3}$
Wafer 2	Phosphorus	1 e 15 atom $/ \mathrm{cm}^{2}$	1.5 e 19 atom $/ \mathrm{cm}^{3}$
Wafer 3	Boron	1 e 14 atom $/ \mathrm{cm}^{2}$	1.3 e 18 atom $/ \mathrm{cm}^{3}$
Wafer 4	Boon	1 e 15 atom $/ \mathrm{cm}^{2}$	1.3 e 19 atom $/ \mathrm{cm}^{3}$

Wafer				Implantation			Annealing			
$\#$	Type	Resistivity	Thickness	Oxide	Ion	Energy	Dosis	Temperature	Time	Ambient
		$(\Omega . \mathrm{cm})$	(um)	(nm)		(keV)	$\left(\mathrm{at} / \mathrm{cm}^{\wedge} 2\right)$	(oC)	(min)	
$9877-$ DET-1	P	$0,1-1,4$	525	100	P	130	$1,0 \mathrm{E}+14$	1000	180	N 2
$9877-$ DET-2	P	$0,1-1,4$	525	100	P	130	$1,0 \mathrm{E}+15$	1000	180	N 2
$9877-$ DET-3	N	$1-12$	525	100	B	60	$1,0 \mathrm{E}+14$	1000	180	N 2
$9877-D E T-4$	N	$1-12$	525	100	B	60	$1,0 \mathrm{E}+15$	1000	180	N 2

Samples characteristics

4 wafers each with a different expected implantation concentration:

$$
\begin{aligned}
& \text {-Wafer } 1 \rightarrow 1.5 \times 10^{18} \text { atoms } / \mathrm{cm}^{3} \text { (P type) } \\
& \text {-Wafer } 2 \rightarrow 1.5 \times 10^{19} \text { atoms } / \mathrm{cm}^{3} \text { (P type) } \\
& \text {-Wafer } 3 \rightarrow 1.3 \times 10^{18} \text { atoms } / \mathrm{cm}^{3}(\mathrm{~N} \text { type) } \\
& \text {-Wafer } 4 \longrightarrow 1.3 \times 10^{19} \text { atoms } / \mathrm{cm}^{3}(\mathrm{~N} \text { type) }
\end{aligned}
$$

Doped region
t=1um

Sample seen from above

Sample seen from the side

From Guido Pelligrini

Mask: Direct laser writing

Mask
-W>>L (W/L ~2-3)

Layout on a 10 mm square piece of silicon

Test structure layout

Illustration of the different operational steps

Dry etching process.

- Use chemically reactive plasma to remove material depsited on wafers (Silicon in our case).
- The plasma is generated under low pressure (vacuum): typical process pressure $=10^{\wedge}-5 \mathrm{mbar}$.
- Plasma density: $1-5 \times 10^{9} / \mathrm{cm} 2$.
- High energy ions from the plasma attack the wafer surface and react with it , typical energy ~ 30 eV .
cal
LABORATOIRE DE L'ACCÉLERATEUR
- The etching process of Silicon is a Fluoride base process, so both CHF3 and SF6 gases were used.
- Pre-etchirg leaning of the sample, a factory plasma with O 2 is used.

Profilometer

Check the distance between Alu Pads
Measure the Etched depth

Aditionnal Instrumentation- Tools

LAL Clean room

TLM measurement

Measured Current as function of bias Voltage of a sample from wafer \# 4 at different spacing between contacts.

TLM measurement

Measured Resistance as a function of contact spacing distance of a sample from wafer \# 4.

	Wafer 2 (atom $\left./ \mathrm{cm}^{3}\right)$	Wafer 3(atom $\left./ \mathrm{cm}^{3}\right)$	Wafer $4\left(\right.$ atom $\left./ \mathrm{cm}^{3}\right)$
Expected peak concentration	1.5×10^{19}	1.5×10^{18}	1.3×10^{19}
Measured peak concentration	$1.9 \times 10^{19}+1 \times 10^{18}$	$3.5 \times 10^{18}+1 \times 10^{17}$	$2.0 \times 10^{19}+2 \times 10^{18}$

Peak concentration after irradiation could be deduced form the measurements Some TLM samples have been irradiated at Lubjana $2 \times 10^{15} \mathrm{Neq} / \mathrm{cm}^{2}$ and 2×10^{16}

Resistance Measurements

Resistance Measurement for Irradiated Sample

Measured Resistance as a function of contact spacing distance of (non and) Irradiated sample for different etching steps.

From Resistivity profile to Concentration profile

${ }^{\circ}$ Resistivity of doped silicon at different depth have been found using TLM Method. „Carrier concentration has been calculated ${ }_{\square}$ Active dopant profile has been extracted.
${ }$ Measured peak concentration was found to be of order 1 e 19 atom. cm^{-3} and is in a good agreement with expected value provided by manufacturer.

Before irradition

What is the total doping concentration and how does it compare with ©ैtctive doping profile?

Secondary Ion Mass Spectrometry (SIMS)

- General characteristics of sims

- Analytical technique to characterize the impurities in the surface and near surface ($\sim 30 \mu \mathrm{~m}$) region of solids (e.g. semiconductors) or some liquids;
- It relies on the sputtering of a primary energetic ion beam (0.5-20 keV) on the surface sample and the analysis of the produced ionized secondary particles by mass spectrometry;
- It has good detection sensitivity for many elements: it can detect dopant densities as low as $10^{14} \mathrm{~cm}^{-3}$;
- It allows simultaneous detection of different elements, has a depth resolution of 1 to 5 nm and can give a lateral surface characterization on a scale of several microns;
- It is a destructive method, since the act of the removing material by sputtering leaves a crater in a sample;
- It determines the total dopant density profile and not the electrically active impurity density (e.g. electrical methods as spreading resistance profiling, TLM, Hall effect etc..).

Secondary Ion Mass Spectrometry (SIMS)

SIMS is an analysis method measuring the secondary ions ejected from a sample surface when bombarded by a primary beam

\rightarrow Allow a scan for the samples surface and depth.
\rightarrow Depth profiling and imaging can be dimensional dopant maps

further on SIMS Imaging Method

What is SIMS imaging?
 \checkmark Can achieve lateral resolutions up to $5 \mu \mathrm{~m}$.

 combined to yield very powerful three-\checkmark High surface sensitivity at ppb level can be reached.
\checkmark Sample preparation is rather simple.
\checkmark Equivalent measuring time with standard 1D SiMS.

\checkmark Equivalent measuring time

Phosphorus Implant 3D SIMS Doping Map

- SIMS of ADVACAM Planar pixel

Sputtering the sample layer after layer we could find AL layer of thinkness 500 nm covering the pixel region then an Oxide layer of about 100 nm on the pixel and between the pixels then we could see the phosphorus implantation inside the pixelThe phosphorus implantation go through the silicon about $1 \mu \mathrm{~m}$ in depth and you can see here the doping map at the top of the sample.

Comparison of TLM active doping profile at different fluences and total concentration using SIMS

Comparing Active Doping Profile for Different Level of Irradiation

Conclusions and prospects

TLM method seems to be a promising method to measure active dopant concentration.
Preliminary results shows that the measured peak concentration of active carriers using TLM Method is in a good agreement with expected value from the foundry producer (CNM),

Measurements using TLM and SIMS methods, for N type Silicon has been compared and behave as predicted,
Several samples from different wafers have been sent to be irradiated with Neutrons (Ljubljana) to fluences ($2 \times 10^{15} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$ and $2 \times 10^{16} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$). Changing of active dopant profile before and after irradiation have been investigated.

Loss of active carriers as function of depth are clearly seen and could be evaluated from the measurements

Next actions :

* Phosphorous P-Type case should be investigated using the same TLM method
- Study proton irradiation at high fluences
* Quantitative active doping concentration from TeraHertz method (non destructive) or SPR can be cross-checked with TLM
* Active doping profile with TLM can be usefully used in TCAD simulations (reliability of TCAD framework)

2015-04-RD50 Project LAL Implication Proposed Actions

Method	Type	Process Step	Cost	Timeline
TLM	Active dopant profile estimation	Design and mask production	1200 €	2.5 months
		N-type, Fz Silicon, 3kOh wafers	300 €	
		Implantation: 1e15 / 5e14 / 5e15	330 €	
		Wafer Processing	285 €	
		Dicing and Expedition	150 €	
		Measuring	500 €	6 months
	Total:		3000 €	

