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Motivation and background 

•  Low beam losses – regular 

regime for LHC operation.  

•  Increased beam loss -  

fast pressure increase,  

particles of  dust inside the 

beam pipe, etc.   

•  Energy deposition from 

beam loss might heat up LHe 

magnets and then: 

 

Beam losses must be 

carefully monitored 
- 

 

 
Solution: Place BLM sensor close to the magnet coil or 

 integrate it in the coil construction. This requires: 

• Operational temperature  –   1.9 – 4K 

• No access along the magnet lifetime 

• Irradiation by debris up to fluence of 10e16  p/cm2 
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Silicon BLM concept 

Operational conditions: 
1. Operational temperature  –   1.9 – 4K 

2. No access along the magnet lifetime 

3. Irradiation by debris up to fluence of 

10e16  p/cm2 

Technical requirements 
1. Compactness 

2. Technology of mass-production 

3. Reproducibility of characteristics 

4. Cost effectiveness 

Goal of development 
1. Full prototype of BLM 

2. Predictable scenario of degradation   

Development under collaboration: 

Be-Bi-BL  group, RD39 (CERN), Ioffe institute (St. Petersburg), HIP (Helsinki)  
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Expected problems 

1. Complicate irradiation test:  

 irradiation in super-flued He 1.9K or liquid He 4.3K 

 each experiment requires individual cryostat 

2.  Limited experimental technique:  

 TSC, DLTS, I(T), C(V) methods are not available 

3. Precise alignment of invisible beam with  

    invisible set of samples 

3. Non stop data collection for ~ 1 month  

4. Not enough data on: 

•  Radiation induced defects formation 

•  Properties of radiation induced defects as a trapping  

centers at at LHe 

•  Simulation tools 

Solution 
Application of laser based TCT and CCE  vs. V and F analysis 

4 



5 

Interstitials  – mobile at T~4K 

Vacancies  (V+, V-)  -    mobile at: 

 T~70K (standard n-Si) 

 T~150K (standard p-Si) 

 T~ 200K (high resistivity Si) 

Radiation damage in Si at cryogenic T  

• G. D. Watkins, EPR of Defects in 

Semiconductors: Past, Present, Future, 

Phys. of Solid State, 41 (1999) 746-750.  

• G. D. Watkins, Defects and diffusion in 

silicon processing, Ed. T. D. De la Rubia, et 

al.; MRS Sypm. Proc. Vol. 469, Pittsburgh 

(1997) 139.  

Expected radiation damage at LHe T:  

formation of vacancy-related defects 

critical for degradation is suggested to 

be suppressed 

       Available:  

 renewed wide knowledge on radiation damage of Si detectors at RT 

and slight cooling (down to -50°C) – CERN RD collaborations, 

experiments at LHC 
 Low T: raw bulk silicon 
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Milestones and timelines of 
cryoBLM development 

2012 – first test of as-processed Si PIN detector operation at 4 K:            

               proof of concept , measurements of transport properties 
 

2012 – in situ RadTest 1 at 1.9K:    standard  detectors (300 mm)  
 

2014 – in situ RadTest 2 at 1.9 K:    first study of thin BLM (100 mm)  

        

2014 – installation of the first Si BLM modules 

2015 – in situ RadTest 3 at 4.1 K:  Improved design of thin BLM   

    statistics of degradation scenario 
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In situ RadTests 1:  

 P+/n/n+ silicon pad detectors designed and 

processed by consortium of the Ioffe Institute, St. 

Petersburg, and Research Institute of Material 

Science and Technology, Zelenograd, both 

Russia 

 r: 10-15 kWcm (mostly), 500 Wcm and 4.5 

Wcm; thickness W: 300 mm  

  Detector operation at reverse and forward 

bias mode;  

     forward – Current Injected Detectors (CID) 

      Measurements 
 

 Collected charge Qc :  determined by 

integrating the detector output current over 

the 400 ms spill and averaging over a 

sequence of spills 

 TCT :  LeCroy, 3 GHz bandwidth, 630 nm 

laser, width 45 ps (1st test)  

Spill shapes 
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RadTest 1 collected charge vs. F and V 
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    All detectors survived irradiation 

up to 1016 p/cm2 

 no sensitivity to r at this F 

 

 Unexpected result –  

degradation rate higher than at  RT  

Different silicon resistivity 

 r = 10 kWcm, 500 and 4.5 Wcm 
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• 1-D  approach, E = V/w, 

• 2 – levels (EVL) model, 

• 1/te,h = be,hFeq;  b – trapping probability 

constant, 

• Drift velocities at 4 K (F = 0):  

      ves = 1.2x107 cm/s,    vhs = 7x106 cm/s 
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CCE(F) fit with Hecht equation 
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  is up to 25 times larger at 1.9K 

CCE degradation at LHe  

can be explained by trapping 
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TCT voltage scans at 1.9 K 

Observation of acceptors domination and DP E(x) 
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RadTest 2:collected charge vs. F and V 
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Test 2; 300 and 100 mm 

Qc(100)>Qc(300)! 
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Detectors (modules) for RadTest 3 

module Amount 

in module 

    r 

(kWcm) 

d 

(mm

) 

area 

(mm2) 

bias (V)   

purpose 

  

readout 

TeleIN 4 ≥15 300 12×12 200 telescope “IN” oscilloscope 

MM1 4 ≥15 300 5×5 400 statistics Ioffe-DAQ 

MM2 4 ~0.5 300 5×5 500 statistics -“- 

MM3 4 ≥15 100 5×5 500 statistics -“- 

MM4 4 ≥15 100 5×5 400 statistics -“- 

Ref1 1 ≥15 300 5×5 400 test of DAQ 

system 

CERN-DAQ 

Ref2 1 ≥15 300 5×5 400 -“- -“- 

TeleOUT 4 ≥15 300 12×12 200 telescope 

“OUT” 

oscilloscope 

Total detector amount – 26 pcs. 

TeleIN and TeleOUT – silicon beam telescopes 
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Cassette with detectors modules 

Multi-module construction TCT modules (Ref1,2) 

Silicon Beam Telescope module 

beam 
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Electronics 

1.  Multichannel CERN-DAQ system 

2.  Multichannel DAQ system of Ioffe 

Institute for statistical study (new)  

Permanent on-line 

registration during 3 weeks 

of experiment 

16 channel 

sampling unit  

& 

ADC 

Flash 

memory 

Digital 

Trigger 

& 

DAQ 

16 

inputs 
Ampl 

PC 
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Cryostat for RadTests 3 

 Cryogenic system for 

cooling to   1.9K 

 Irradiation at CERN PS 

 23 GeV protons, beam 

diameter ~1 cm at the detector 

location 

 Beam intensity 1.3×1011 

p/cm2  

per 400 ms spill (~1010 p/s on 

detectors) 

 Fluence to 2×1015 -1×1016 

p/cm2     

 Beam position monitoring 
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Detector signals 
from spills at  
F ~ 1015 p/cm2 

1.7×1015 p/cm2 

3.1×1015 p/cm2 

5.9×1015 p/cm2 

• Spill:  

        Duration - 400 ms 

        Intensity  ~ (6-7)×1010 p/cm2 

Data from CERN-DAQ system 

Detectors:  

Ref1 (Ch1), Ref2 (Ch3) 

 d = 300 mm 

Origin of signal fluctuations is not  

clear yet. 

This feature is recorded by both 

DAQ systems. 
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RadTest 3: CCE in voltage scans 

Different thickness 

Qo(300)/Qo(100)  = 3 CCE(100) > CCE (300)! 

Higher efficiency of thinned detectors is due to two factors: 

 1) Emean is higher, 

  2) Different E(x) distribution 
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RadTest 3: statistics of signals 

Data from Ioffe DAQ system; 16 detectors from modules MM1-MM4  
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MM-3 Si   15 kWxcm

   100 mm
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MM-4
Si   15 kWxcm

   100 mm

- 100 mm: 

 minimal 

deviations 

(within 10%); 

- maximal 

signal 

   is not  

    at F = 0 

(non-

monotonic 

signal 

reduction) 

18 



19 

 

 The rate of signal degradation at 1.9K is higher than at RT. 

 Si detectors are appropriate for BLM application at 1.9K  

        and irradiation up to F = 21015 p/cm2 . 

 Operation in CID mode is advantageous up to F ~ 21015 p/cm2.. 

 Thin (100 mm) detectors give lower rate of signal degradation 

and minimal deviations of the signal. 

 Not all is clear! 

 4 Gb data are still under treatment 

Conclusions 

   Publications 

C. Kurfürst, et al., Nucl. Instrum. Meth. A 782 (2015) 149. 

E. Verbitskaya, et al., Nucl. Instrum. Meth. A 796 (2015) 118. 

Z. Li, et al., Nucl. Instrum. Meth. A 824 (2016) 476 

    and references herein. 
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   2014:  

First Si BLM module 

installed 

on the end of the cold 

mass of LHe vessel of 

superconductive coils of 

the magnets 

Most important 

Thank you for your attention 
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