AC LGADs

Simone M. Mazza on behalf of the SCIPP group

AC LGADs

- AC-LGAD replaces the segmentation of the pad implants into continuous sheets of multiplication layer and $n+$ layer and only segments the metal connected to the readout
- The signal is AC-coupled into the metal pads by another continuous sheet of coupling oxide.

Metal

AC LGADs

- The difference in signal between strips is provided by the time over which the charge is held at a metal contact before it is collected at the N^{+}- contacts
- For this to work, the parameters of the sensors have to be optimized:
- The sheet resistance of the N^{+}given by its resistivity divided by its thickness
- The capacitance of the metal read-out, given by the area and the thickness of the oxide
- Dimension and distance of the read out pads

Testing AC detector from CNM

- Run 10478, Wafer 4, two AC detectors: AC-1 and AC-2
- Large detector ($0.84 \times 0.84 \mathrm{~cm}$)
- $50 \mu \mathrm{~m}$ thin , 14 strips, 49 pixels
- DUT: AC-2 mounted on a 3 channel board with the $\mathrm{N}+$ implant to ground trough $4 \times 90 \mathrm{~K} \Omega$ resistors
- Test with TCT IR laser for different setups
- 1 pixel 1 strip connected
- 1 pixel and 8 pixel connected together
- 3 strips connected
- 3 pixel connected, grounding all around
- Pulsing in different areas of the detector: parameter scan in Vbias and position

- HV supply Keithley 2410
- Triggering on the laser trigger
- Room temperature

IV - CV of AC-1
 IV Characteristic (AC-1)

- Measurements done at Room temperature
- The Guard Ring is floating or grounded
- HV is applied at the backside
- Probes on Nplus implant are grounded
- Strips/pixels are floating
- Rapid current increase on the detector at 25 V
- AC-2 (tested on board) shows similar behavior
- However the Pmax of the pulses increase with Vbias after 25V
- Doesn't seem like breakdown
- Impossible to measure CV because of the current rapid increase at 25 V

1 pixel and 1 strip connection

- 1 pixel and 1 strip connected to the read out, all the remaining pads are floating
- Difference in the pulse shape of a pixel with small capacitance and a strip with high capacitance
- Pixel has clear undershoot, strip has long signal with very long undershoot
- TCT laser pulse from the front side

Pulse shape at 100 V

Connection setup

- 3 pixels (left side of the detector) in the middle are read out
- All the pixel and strip around them are grounded
- Register the pulse shapes from a laser pulse in a grid around the 3 pixels and in outside points
- Laser at $38 \%, 1 \mathrm{KHz}$
- Each pulse is mean of the pulses in a 200×200 um area around the grid position

2d his $(Z[0]=25298.998047 \mathrm{U} 1[0]=0.000000$ U2[0]=0.000000)

2d his ($Z[0]=25298.998047 \mathrm{U1}[0]=0.000000 \mathrm{U} 2[0]=0.000000$)

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Simulation

- Spice/Pyspice to simulate the behavior of the AC detector
- Grid of resistor with on the 3 pixels the AC connection to 50Ω (amplifier readout)
- Other grounded nodes are AC connected to ground
- The component resistance of the grid is equal to the sheet resistance of the Wafer
- For W4 the sheet resistance should be $\sim 60-100 \Omega$
- Measured on wafer by CNM
- Goals: test if the data is in agreement with the simulation and evaluate what is the optimum value of the sheet resistance

Many thanks to Marco Mandurrino (Torino)

Simulation

- Inject the signal in the resistance grid and look at the output of the 3 pixels
- Parameters of interest: ratio of the Pmax of the output pulse, the shape (and undershoot) and the pulse width
- Use as signal the pulse shape from CNM S1 detector from W4
- S1050, same wafer and structure as the AC detector (mean of 1000 pulses)
- To get the response to TCT of the DC coupled $\mathrm{N}+$ implant
- Using IR laser from the front with same intensity as in the AC detector

Simulation

- Run the simulation for sheet resistances of:
- 5-100 Ω (5 Ω step), $100-1000 \Omega$ (50 Ω step)
- Compare the simulated pulses with data
- Take a simulation/data scale factor (for each sheet resistance) from position 2 x 2 in the center of the grid
- Use the scale factor to normalize the data/simulation pulses on every position
- Scale factors evaluated in each position have variations of $\sim 10 \%$ but with sporadic high variations
- Simulated pulses have less width than data
- Simulation starts from S 1 detector $(1 \mathrm{x} 1 \mathrm{~mm})$ pulse while data is from a $0.84 \times 0.84 \mathrm{~cm}$ detector

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Detector: $\mathrm{W} 4 \mathrm{AC} 2, \mathrm{~V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Chi2 distribution

- Evaluated the Chi2 value for Pmax (data - simulation) after the rescaling
- Sum over each position and each pixel for each one of the sheet resistances
- σ for the chi2 is taken as RMS of the maximum of the pulse in the 200x200um scanned area in the grid point
- 60Ω seems like the best fit between the tested values
χ^{2} between data and simulation

Summary

- The spice simulation is simulating quite well the behavior of the AC detector in the given setup
- However different signal width and not perfect ratios between signal
- From simulation it looks like a variation of $\mathrm{x} 3-\mathrm{x} 5$ of the present sheet resistance sufficiently improves the readout difference between pixels
- A bigger variation (x50) doesn’t improve much and might be technically impossible

Work in progress

- Do β-source charge collection on AC detectors
- Do a more refined grid simulation to also optimize the dimension of the pads and the distance between pads
- Run the simulation also for other setups (strips, strips + pixels)
- Use Weightfield or Sentaurus to simulate the pulse or use the pulse of the AC-2 $\mathrm{N}+$ implant
- Sentaurus or Silvaco TCAD to simulate the behavior (takes time to reproduce this intricate pattern)

RD50 funding request

- Nov 2017-

Title of project: $\quad 50 \mu \mathrm{~m}$ thin AC-LGAD
Contact person: Mar Carulla CNM Barcelona mar.carulla@imb-cnm.csic.es
RD50 Institutes:

1. CNM-Barcelona, G. Pellegrini, Giulio.Pellegrini@csic.es
2. UC Santa Cruz, H. Sadrozinski, hartmut@ucsc.edu
3. IFAE Barcelona, J. Lange, joern.lange@cern.ch
4. JSI Ljubljana, G. Kramberger, Gregor.Kramberger@ijs.si asked
5. INFN Torino, N. Cartiglia, cartiglia@to.infn.it
6. BNL Brookhaven, A. Tricoli, Alessandro.Tricoli@cern.ch
7. Fermilab, A. Apresyan, Artur.Apresyan@cern.ch asked
8. CERN, M. Moll, Michael.Moll@cern.ch

Request to RD50: $15,000 €$
Total project cost: $25,250 €$

Project description:

This project aims at producing $50 \mu \mathrm{~m}$ thin AC-coupled Low Gain Avalanche Detectors (AC-LGADs) with continuous n-implant and multiplication layer for larger fill-factor, higher breakdown voltage and simplified production.

Summary

- Simulation studies shows that we understand the behaviour of AC-LGADs and we need to optimize the production parameters (sheet resistance, dimension and distance between pads, capacitance of the oxide layer, multiplication layer)
- Plan for after production
- Initial electrical characterizations (C-V/I-V)
- Measurements of proprieties by studying pulse shapes with TCT and ${ }^{90} \mathrm{Sr}$ beta
- Irradiation with neutrons at JSI Ljubljana and protons at IRRAD CERN

Activity	Institutes
Device simulations	CNM
SPICE simulations	UCSC, Torino
Silvaco simulations	BNL
Wafer processing	CNM
Electrical characterization	CNM, JSI, Torino, UCSC, BNL
TCT measurements	JSI, Torino, UCSC, BNL
${ }^{90}$ Sr beta particles	JSI, Torino, UCSC, BNL
Irradiations	JSI, CERN

Project schedule

- Parameter optimization with simulations (1 month)
- Layout of wafer (1 month)
- Device fabrication at CNM clean room facilities (3-4 months)
- Device electrical characterization, gain and isolation measurements (2-3 months)
- Irradiation of devices (neutrons at JSI, protons at IRRAD). (partly in parallel with 4.) (2-3 months)
- Device electrical characterization, gain and time resolution measurements after irradiation. (3 months)

Contributors

This work was supported by the United States Department of Energy, grant DE-FG02-04ER41286
This work was partially performed within the CERN RD50 collaboration.
Part of this work has been financed by the European Union's Horizon 2020 Research and Innovation funding program, under Grant Agreement no. 654168 (AIDA-2020) and Grant Agreement no. 669529 (ERC UFSD669529), and by the Italian Ministero degli Affari Esteri and INFN Gruppo V.
E. Estreda, P. Freeman, Z. Galloway, C. Gee, V. Gkougkousis, A. Goto, H. Grabas, Z. Luce, F. Martinez-Mckinney, S. M. Mazza, R. Rodriguez, H. F.-W. Sadrozinski, A. Seiden, E. Spencer, M. Wilder, Yuzhan Zhao

SCIPP, Univ. of California Santa Cruz, CA 95064, USA

R. Arcidiacono, N. Cartiglia, M. Ferrero, M. Mandurrino, A. Staiano, V. Sola

Univ. of Torino and INFN, Torino, Italy

G. Pellegrini, S. Hidalgo, M. Baselga, M. Carulla,

P. Fernandez-Martinez, D. Flores, A. Merlos, D. Quirion Centro Nacional de Microelectrónica (CNM-CSIC), Barcelona, Spain

Students in bold

Backup

9 pixel setup - TCT

- Connection 1 pixel to Ch1 and 8 pixels to Ch2
- All the other pads are floating
- The pulse of the 8 pixels combined together (resulting in a large capacitance) is similar to the pulse of a strip
- TCT laser pulse

9 pixel setup - α-source charge collection

Strips setup

Connections

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}$: 100V, IR laser $25 \% 50 \mathrm{~Hz}$

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}: 100 \mathrm{~V}$, IR laser $25 \% 50 \mathrm{~Hz}$

Amplitude vs X-Position (25\% DAC, $50 \mathrm{kHz}, 90 \mathrm{~V}$, Scan across middle)

PMax vs Vbias

- First gain increase at $\sim 25 \mathrm{~V}$, second increase at $\sim 75 \mathrm{~V}$

Summary

- Rapid current increase at 25 V is not breakdown
- Pulses are still clear and Pmax depends on Vbias
- Rapid increase of Pmax at 25 V and then at 75 V
- Pulses are 10 ns long with extremely long undershoot
- Because of the high capacitance of the strips
- Pixels however have shorter pulses with clear undershoot
- Difference in amplitude between the strips is not much
- Maximum 20\% difference
- Probably N+ implant is too conductive
- Need to optimize the parameters of the wafer

Pixels setup - data

Out 5

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Out 5

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Pixels setup - simulation

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Simone Michele Mazza - AC project

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Detector: $\mathrm{W} 4 \mathrm{AC} 2, \mathrm{~V}_{\text {bias }}=120 \mathrm{~V}, \mathrm{IR}$ laser $38 \% 1 \mathrm{kHz}$ from the front

Simulation Pmax, position 2×0

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Out 5

Detector: $\mathrm{W} 4 \mathrm{AC} 2, \mathrm{~V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Detector: $\mathrm{W} 4 \mathrm{AC2}, \mathrm{~V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Simulation Pmax, position 2x4

Out 5

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

Simulation Pmax, position 4×0

Detector: W4 AC2, $\mathrm{V}_{\text {bias }}=120 \mathrm{~V}$, IR laser $38 \% 1 \mathrm{kHz}$ from the front

