Second moment of the pion distribution amplitude from Lattice QCD

Fabian Hutzler, Piotr Korcyl, Philipp Wein

and the RQCD collaboration

POETIC 8, Regensburg, 20.3.2018

Hadrons' internal structure

Standard Model of elementary particles: electrons, muons, quarks, gluons, photons, W^{\pm} , Z, Higgs, ...

Credit: Brookhaven National Lab website

Experiment: HERA, LHC, Electron-Ion Collider study hadron structure functions and try to discover the origin of mass,

Theory: Quantum Chromodynamics (QCD) is the theory describing the interations of quarks and gluons.

Quantum Chromodynamics

Lattice Quantum Chromodynamics

- space-time is discretized ⇒ finite dimensional problem fits into a computer,
- equations of QCD are solved numerically,
- the only available ab initio approach.

Monte Carlo simulations of Lattice QCD

- *physical observable* = very high dimensional integral,
- Monte Carlo integration with Boltzmann probability distribution,
- Markov chains to generate samples = configurations,
- many different observables can be estimated using one ensemble of configurations,
- Hybrid Monte Carlo algorithm allows global updates.

Definition

Pion DA is the quantum amplitude that the pion moving with momentum P is built of a pair of quark and antiquark moving with momentum xP and (1-x)P respectively.

Relevance

Pion photoproduction: two off-shell photons provide the hard scale necessary for the factorization into the perturbative and non-perturbative parts. Transition form factor measured most recently experimetally by BaBar '09 and Belle '12.

Implementation

2nd moment of the pion DA, $\langle\xi^2\rangle$, can be obtained numerically from two-point correlation functions.

Pion distribution amplitude

Definition, Braun et al., '15

$$\langle 0|\bar{d}(z_2n)\phi\gamma_5[z_2n,z_1n]u(z_1n)|\pi(p)\rangle = = if_{\pi}(p\cdot n)\int_0^1 dx e^{-i(z_1x+z_2(1-x))p\cdot n}\phi_{\pi}(x,\mu^2)$$

Neglecting isospin breaking effects $\phi_{\pi}(x)$ is symmetric under the interchange of momentum fraction $x \to (1-x)$

$$\phi_{\pi}(x,\mu^2) = \phi_{\pi}(1-x,\mu^2)$$

Moments of the momentum fraction difference

$$\xi = x - (1 - x)$$

are interesting

$$\langle \xi^n \rangle = \int_0^1 dx (2x-1)^n \phi_\pi(x,\mu^2)$$

$$\phi_\pi(x,\mu^2) = 6u(1-u) \Big[1 + \sum_n a_{2n}^\pi(\mu) C_{2n}^{3/2}(2u-1) \Big]$$

Fabian Hutzler, Piotr Korcyl, Philipp Wein

Local operators, Braun et al., '15

The nonlocal operator can be Taylor expanded and expressed in terms of local operators with derivatives

$$\bar{d}(z_2n)\not{n}\gamma_5[z_2n,z_1n]u(z_1n) = \sum_{k,l=0}^{\infty} \frac{z_2^k z_1^l}{k!l!} n^{\rho} n^{\mu_1} \dots n^{\mu_{k+l}} \mathcal{M}_{\rho,\mu_1,\dots,\mu_{l+1}}^{(k,l)}$$

where

$$\mathcal{M}_{\rho,\mu_1,\ldots,\mu_{k+l}}^{(k,l)} = \overline{d}(0) \overleftarrow{D}_{(\mu_1}\ldots\overleftarrow{D}_{\mu_k}\overrightarrow{D}_{\mu_{k+1}}\ldots\overrightarrow{D}_{\mu_{k+l}}\gamma_{\rho}\gamma_5 u(0)$$

Consequently,

$$i^{k+l}\langle 0|\mathcal{M}^{(k,l)}_{
ho,\mu_1,...,\mu_{k+l}}|\pi(
ho)
angle=i\!f_{\pi}
ho_{(
ho}
ho_{\mu_1}\dots
ho_{\mu_{k+l}}\langle x^l(1-x)^k
angle$$

Lattice operators for the 2nd moment, Braun et al., '15

Two operators local are relevant

$$\mathcal{O}_{\rho\mu\nu}^{-}(x) = \bar{d}(x) \left[\overleftarrow{D}_{(\mu}\overleftarrow{D}_{\nu} - 2\overleftarrow{D}_{(\mu}\overrightarrow{D}_{\nu} + \overrightarrow{D}_{(\mu}\overrightarrow{D}_{\nu}) \gamma_{5}u(x) \right]$$

and

$$\mathcal{O}_{\rho\mu\nu}^{+}(x) = \bar{d}(x) \left[\overleftarrow{D}_{(\mu} \overleftarrow{D}_{\nu} + 2\overleftarrow{D}_{(\mu} \overrightarrow{D}_{\nu} + \overrightarrow{D}_{(\mu} \overrightarrow{D}_{\nu}) \gamma_{5} u(x) \right]$$

We estimate the following correlation functions

$$egin{aligned} \mathcal{C}_{
ho}(t,\mathbf{p}) &= a^3\sum_{\mathbf{x}}e^{-i\mathbf{p}\mathbf{x}}\langle\mathcal{O}_{
ho}(\mathbf{x},t)J_{\gamma_5}(0)
angle \ \mathcal{C}_{
ho\mu
u}^{\pm}(t,\mathbf{p}) &= a^3\sum_{\mathbf{x}}e^{-i\mathbf{p}\mathbf{x}}\langle\mathcal{O}_{
ho\mu
u}^{\pm}(\mathbf{x},t)J_{\gamma_5}(0)
angle \end{aligned}$$

Lattice operators for the 2nd moment, Braun et al., '15

From the correlation functions we construct ratios

$$\mathsf{R}^{\pm}_{
ho\mu
u,\sigma}(t,\mathbf{p})=rac{\mathcal{C}^{\pm}_{
ho\mu
u}(t,\mathbf{p})}{\mathcal{C}_{\sigma}(t,\mathbf{p})}$$

which exhibit plateaux and which we fit to extract the value $R^{\pm}_{\rho\mu\nu,\sigma}$. Finally,

$$egin{aligned} &\langle \xi^2
angle^{\mathrm{MS}} = \zeta_{11}R^- + \zeta_{12}R^+, \ &a_2^{\mathrm{\overline{MS}}} = rac{7}{12} \Big[5\zeta_{11}R^- + (5\zeta_{12} - \zeta_{22})R^+ \Big] \end{aligned}$$

where ζ_{ij} are renormalization constants estimated nonperturbatively.

Landscape of ensembles

Periodic boundary conditions

Credit: ALPHA Collaboration, Nucl. Phys. B845 (2011) 93-119

A very severe critical slowing down of the topological charge in pure Yang-Mills theory has been observed when using the HMC algorithm, implying that the simulations scale as a^{-10} .

Landscape of ensembles

Coordinated Lattice Simulations collaboration

CLS

CLS: CERN, DESY, Univ. Regensburg, Univ. Mainz, Univ. Madrid, Univ. Munster, Univ. Odensee, Jagiellonian Univ., Univ. Milano, Univ. Dublin

Landscape of ensembles

Credit: W. Söldner, Univ. Regensburg

Two trajectories lead to the physical point, a third trajectory as generated for non-perturbative renormalization.

Challenges: autocorrelations

Autocorrelation of the topological charge

Credit: J. Simeth, Univ. Regensburg

In spite of using open boundary conditions we still experience growing autocorrelations times: ~ 200 configurations at a = 0.039 fm. Fabian Hutzler, Piotr Korcyl, Philipp Wein

Plateau fit example

$$R^{\pm}_{
ho\mu
u,\sigma}(t,\mathbf{p}) = rac{C^{\pm}_{
ho\mu
u}(t,\mathbf{p})}{C_{\sigma}(t,\mathbf{p})}$$

We use momentum smearing (Bali *et al.* '16) to reduce signal-to-noise problem (Braun *et al.* '17).

Fabian Hutzler, Piotr Korcyl, Philipp Wein

Combined fit

We perform a combined fit to all data points: all lattice spacings and all pion/kaon masses along the three trajectories with the ChPT inspired fit ansatz

$$\overline{M}^2 = rac{2m_K^2 + m_\pi^2}{3}, \qquad \qquad \delta M^2 = m_K^2 - m_\pi^2$$

$$\langle \xi^2 \rangle_{\alpha} = \left(1 + c_0 a + c_1 a \overline{M}^2 + c_2^{\alpha} a \delta M^2 \right) \begin{cases} \langle \xi^2 \rangle_0 + \overline{AM}^2 - 2 \delta A \delta M^2, & \alpha = \pi, \\ \langle \xi^2 \rangle_0 + \overline{AM}^2 + \delta A \delta M^2, & \alpha = K \end{cases}$$

and \overline{A} and δA are combinations of low energy constants. \Rightarrow 7 fit parameters

Continuum extrapolation: blue for pion, green for kaon

Continuum extrapolation: blue for pion, green for kaon

Continuum extrapolation: blue for pion, green for kaon

Conclusions

Pion distribution amplitude

Our preliminary result

$$\langle \xi^2 \rangle = 0.236 \pm 0.012$$

is the first ever continuum determination from First Principles. Our previous value at finite lattice spacing and for $N_f = 2$ was 0.236 ± 0.008 .

Kaon and eta distribution amplitude

We also measured the kaon first and second moments and can infer from the combined fit the moment of the eta distribution amplitude.

Full x-dependence of the pion DA

In a separate project we are currently estimating non-perturbatively the full x dependence of the pion DA: Braun *et al.* '18

We acknowledge the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) of the University of Warsaw for computer time on Okeanos (grant No. GA67-12).