Gluon structure from lattice QCD

Phiala Shanahan

William and Mary Thomas Jefferson National Accelerator Facility

Gluon structure

Gluons offer a new window on nuclear structure

- Past 60+ years: detailed view of quark structure of nucleons
- Gluon structure also important
 - Unpolarised gluon PDF dominant at small longitudinal momentum fraction
- Other aspects of gluon structure relatively unexplored

Parton distributions in the proton

Gluon Structure from LQCD

How much do gluons contribute to the proton's

- Momentum
 Mass
- Spin

What is the 3D gluon distribution of a proton
 PDFs
 TMDs
 GPDs
 Gluon radius'

1

How is the gluon structure of a proton modified in a nucleus

Gluon 'EMC' effect
 Exotic glue

Lattice QCD

- Numerical first-principles approach to non-perturbative QCD
- Euclidean space-time t
 ightarrow i au
 - Finite lattice spacing a
 - Volume $L^3 \times T \approx 32^3 \times 64$
 - Boundary conditions
- Some calculations use largerthan-physical quark masses (cheaper)

Approximate the QCD path integral by Monte Carlo

 $\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A\mathcal{D}\overline{\psi}\mathcal{D}\psi\mathcal{O}[A,\overline{\psi}\psi] e^{-S[A,\overline{\psi}\psi]} \longrightarrow \langle \mathcal{O} \rangle \simeq \frac{1}{N_{\text{conf}}} \sum_{i}^{N_{\text{conf}}} \mathcal{O}([U^{i}])$

with field configurations U^i distributed according to $e^{-S[U]}$

Doing lattice QCD

Correlation decays exponentially with distance in time:

$$C_2(t) = \sum_n Z_n \exp(-E_n t)$$
 all eigenstates with q#'s of proton

At late times:

 $\rightarrow Z_0 \exp(-E_0 t)$

Ground state mass revealed through "effective mass plot"

$$M(t) = \ln \left[\frac{C_2(t)}{C_2(t+1)} \right] \stackrel{t \to \infty}{\longrightarrow} E_0$$

LQCD matrix elements

How do we calculate matrix elements?

- Create three quarks (correct quantum numbers) at a source and annihilate the three quarks at sink far from source
- Insert operator at intermediate timeslice

Remove time-dependence by dividing out with two-point correlators: $\frac{C_3(t,\tau,\vec{p},\vec{q})}{C_2(\tau,\vec{p})} \stackrel{0 \ll \tau \ll t}{\longrightarrow} \langle N(p') | \mathcal{O}(q) | N(p) \rangle$

How does the gluon radius of a proton compare to the quark/charge radius?

Charge radius: slope of electric form factor with respect to momentum transfer

Gluon radius:

slope of gluon form factor with respect to momentum transfer

Leading twist gluon parton distribution $\Delta(x,Q^2)$ [Jaffe & Manohar 1989]

Unambiguously gluonic: no analogous quark PDF at twist-2

- Double helicity flip: non-vanishing in forward limit for targets with spin ≥ I
- Experimentally measurable in unpolarised electron DIS on polarised target
 - Nitrogen target: JLab Lol 2015
 - Polarised nuclei at EIC

Double helicity flip distribution $\Delta(x,Q^2)$

Hadrons: Gluonic Transversity (parton model interpretation)

$$\Delta(x,Q^2) = -\frac{\alpha_s(Q^2)}{2\pi} \text{Tr} Q^2 x^2 \int_x^1 \frac{dy}{y^3} \left[g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(y,Q^2) \right]$$

 $g_{\hat{x},\hat{y}}(y,Q^2)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x}, \hat{y} direction in a target polarised in \hat{x} direction

gluons not associated with individual nucleons in nucleus

$$\langle p|\mathcal{O}|p\rangle = 0$$

 $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Double helicity flip distribution $\Delta(x,Q^2)$

Hadrons: Gluonic Transversity (parton model interpretation)

$$\Delta(x,Q^2) = -\frac{\alpha_s(Q^2)}{2\pi} \text{Tr} Q^2 x^2 \int_x^1 \frac{dy}{y^3} \left[g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(y,Q^2) \right]$$

 $g_{\hat{x},\hat{y}}(y,Q^2)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x}, \hat{y} direction in a target polarised in \hat{x} direction

gluons not associated with individual nucleons in nucleus

$$\langle p|\mathcal{O}|p\rangle = 0$$

 $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Calculating lightcone distributions is challenging in Euclidean space

Moments of $\Delta(x,Q^2)$ are calculable in lattice QCD

$$\int_{0}^{1} dx x^{n-1} \Delta(x, Q^2) = \frac{\alpha_s(Q^2) A_n(Q^2)}{3\pi n+2}, \quad n = 2, 4, 6 \dots$$

Determined by matrix elements of local gluonic operators

Gluon field strength tensor

$$\langle p\underline{E'} | \underline{S} \begin{bmatrix} G_{\mu\mu_1} \overleftarrow{D}_{\mu_3} \dots \overleftarrow{D}_{\mu_n} G_{\nu\mu_2} \end{bmatrix} | \underline{p}\underline{E} \rangle$$
Symmetrise in μ_1, \dots, μ_n , trace subtract in all free indices

$$= (-2i)^{n-2} \underline{S} \begin{bmatrix} p_{\mu}E'_{\mu_1} - p_{\mu_1}E'_{\mu_1} \\ p_{\mu_1} - p_{\mu_1}E'_{\mu_2} \end{bmatrix} (p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu})$$

$$+ (\mu \leftrightarrow \nu) \end{bmatrix} p_{\mu_3} \dots p_{\mu_n} \underline{A_n(Q^2)} \dots,$$
Reduced Matrix Element

Off-forward matrix elements (momentum transfer through operator)

Moments of $\Delta(x,Q^2)$ related to many generalised form factors $\left\langle p'E' \left| S \left[G_{\mu\mu_1} i \overleftrightarrow{D}_{\mu_3} \dots i \overleftrightarrow{D}_{\mu_n} G_{\nu\mu_2} \right] \right| pE \right\rangle$ polarisation vectors Average momentum $= \sum_{m \text{ even}}^n \left\{ A_{1,m-2}^{(n)} (\Delta^2) S \left[(P_{\mu}E_{\mu_1} - E_{\mu}P_{\mu_1}) (P_{\nu}E_{\mu_2}^{\prime*} - E_{\nu}^{\prime*}P_{\mu_2}) \Delta_{\mu_3} \dots \Delta_{\mu_m} P_{\mu_{m+1}} \dots P_{\mu_n} \right]$ $+ A_{2,m-2}^{(n)}(\Delta^2) S \left[(\Delta_{\mu} E_{\mu_1} - E_{\mu} \Delta_{\mu_1}) (\Delta_{\nu} E_{\mu_2}^{\prime*} - E_{\nu}^{\prime*} \Delta_{\mu_2}) \Delta_{\mu_3} \dots \Delta_{\mu_m} P_{\mu_{m+1}} \dots P_{\mu_n} \right]$ $+ A_{3,m-2}^{(n)}(\Delta^2) S \left[\left((\Delta_{\mu} E_{\mu_1} - E_{\mu} \Delta_{\mu_1}) (P_{\nu} E_{\mu_2}^{\prime *} - E_{\nu}^{\prime *} P_{\mu_2}) - (\Delta_{\mu} E_{\mu_1}^{\prime *} - E_{\mu}^{\prime *} \Delta_{\mu_1}) (P_{\nu} E_{\mu_2} - E_{\nu} P_{\mu_2}) \right] \right]$ $\times \Delta_{\mu_3} \dots \Delta_{\mu_m} P_{\mu_{m+1}} \dots P_{\mu_n}]$ $+ A_{4,m-2}^{(n)}(\Delta^2) S \left[(E_{\mu} E_{\mu_1}^{\prime*} - E_{\mu_1} E_{\mu}^{\prime*}) (P_{\nu} \Delta_{\mu_2} - P_{\mu_2} \Delta_{\nu}) \Delta_{\mu_3} \dots \Delta_{\mu_m} P_{\mu_{m+1}} \dots P_{\mu_n} \right]$ $+ \frac{A_{5,m-2}^{(n)}(\Delta^2)}{M^2} S\left[\left((E \cdot P)(P_{\mu}\Delta_{\mu_1} - \Delta_{\mu}P_{\mu_1})(\Delta_{\nu}E_{\mu_2}'^* - E_{\nu}'^*\Delta_{\mu_2})\right)\right]$ + $(E^{\prime *} \cdot P)(P_{\mu}\Delta_{\mu_1} - \Delta_{\mu}P_{\mu_1})(\Delta_{\nu}E_{\mu_2} - E_{\nu}\Delta_{\mu_2}))\Delta_{\mu_3}\dots\Delta_{\mu_m}P_{\mu_{m+1}}\dots P_{\mu_n}]$ $+ \frac{A_{6,m-2}^{(n)}(\Delta^2)}{M^2} S\left[\left((E \cdot P)(P_{\mu}\Delta_{\mu_1} - \Delta_{\mu}P_{\mu_1})(P_{\nu}E_{\mu_2}^{\prime*} - E_{\nu}^{\prime*}P_{\mu_2})\right.\right]$ $- (E'^* \cdot P) (P_{\mu} \Delta_{\mu_1} - \Delta_{\mu} P_{\mu_1}) (P_{\nu} E_{\mu_2} - E_{\nu} P_{\mu_2})) \Delta_{\mu_3} \dots \Delta_{\mu_m} P_{\mu_{m+1}} \dots P_{\mu_n}]$ $+\frac{A_{7,m-2}^{(n)}(\Delta^2)}{M^2}(E'^* \cdot E)S\left[(P_{\mu}\Delta_{\mu_1} - \Delta_{\mu}P_{\mu_1})(P_{\nu}\Delta_{\mu_2} - \Delta_{\nu}P_{\mu_2})\Delta_{\mu_3}\dots\Delta_{\mu_{m-1}}P_{\mu_m}\dots P_{\mu_n}\right]$ $+\frac{A_{8,m-2}^{(n)}(\Delta^2)}{M^4}(E \cdot P)(E'^* \cdot P)S\left[(P_{\mu}\Delta_{\mu_1} - \Delta_{\mu}P_{\mu_1})(P_{\nu}\Delta_{\mu_2} - \Delta_{\nu}P_{\mu_2})\Delta_{\mu_3}\dots\Delta_{\mu_m}P_{\mu_{m+1}}\dots P_{\mu_n}\right]\Big\}$

Off-forward matrix elements (momentum transfer through operator)

Moments of $\Delta(x,Q^2)$ related to many generalised form factors $\left\langle p'E' \left| S \left[G_{\mu\mu_1} i \overleftrightarrow{D}_{\mu_3} \dots i \overleftrightarrow{D}_{\mu_n} G_{\nu\mu_2} \right] \right| pE \right\rangle$ polarisation vectors Average momentum $= \sum_{\substack{m \text{ even} \\ m=2}}^{n} \left\{ A_{1,m-2}^{(n)}(\Delta^2) S \left[(P_{\mu}E_{\mu_1} - E_{\mu}P_{\mu_1})(P_{\nu}E_{\mu_2}'^* - E_{\nu}'^*P_{\mu_2}) \Delta_{\mu_3} \dots \Delta_{\mu_m} P_{\mu_{m+1}} \dots P_{\mu_n} \right]$ Momentum transfer $+A_{2,m-2}^{(n)}(\Delta^2)S[(\Delta E_{\mu_1}-E_{\mu}\Delta E_{\mu_2})]$ Many gluonic radii: $(_{\nu}P_{\mu_2}))$ Defined by slope of each $+ A^{(n)}_{4,m-2}(\Delta^2) S$ form factor at $Q^2 = \Delta^2 = 0$ (or linear combinations) $.P_{\mu_n}]$ $+ \frac{A_{6,m-2}^{(n)}(\Delta^2)}{M^2} S\left[((F P)(P_{\mu} \Delta_{\mu_1} - \Delta_{\mu} P_{\mu_1})(P_{\nu} E_{\mu_2}^{\prime*} - E_{\nu}^{\prime*} P_{\mu_2}) \right]$ $-(E'^{*}P)(P_{\mu}\Delta_{\mu_{1}}-\Delta_{\mu}P_{\mu_{1}})(P_{\nu}E_{\mu_{2}}-E_{\nu}P_{\mu_{2}}))\Delta_{\mu_{3}}\dots\Delta_{\mu_{m}}P_{\mu_{m+1}}\dots P_{\mu_{n}}]$ $\frac{A_{7,m-2}^{(n)}(\Delta^2)}{M^2} (E'^*, \mathcal{L}) S \left[(P_{\mu} \Delta_{\mu_1} - \Delta_{\mu} P_{\mu_1}) (P_{\nu} \Delta_{\mu_2} - \Delta_{\nu} P_{\mu_2}) \Delta_{\mu_3} \dots \Delta_{\mu_{m-1}} P_{\mu_m} \dots P_{\mu_n} \right]$ $(E \cdot P)(E^{\prime *} \cdot P)S\left[(P_{\mu}\Delta_{\mu_{1}} - \Delta_{\mu}P_{\mu_{1}})(P_{\nu}\Delta_{\mu_{2}} - \Delta_{\nu}P_{\mu_{2}})\Delta_{\mu_{3}}\dots\Delta_{\mu_{m}}P_{\mu_{m+1}}\dots P_{\mu_{n}}\right]\Big\}$

- Take linear combinations of operators that transform irreducibly under hypercubic group

Matrix

element

operator

insertion time

sink time

 \ll

 \propto

 $R_{jk}(t,\tau,\vec{p}) \equiv$

Calculate ratio for

- All source-sink polarisation combinations (j,k)
- Boost momenta up to (I,I,I)
- All operators in each hypercubic irrep.

Gluon transversity GFFs

Detmold, Shanahan, PRD 94 (2016), 014507, Detmold, Pefkou, Shanahan, PRD 95 (2017), 114515

φ(s̄s) meson (simplest spin-1 system):

One transversity generalised form factor can be resolved at all momenta

Dipole-like fall-off vs $|\Delta^2|$

 $m_{\pi} \sim 450 \text{ MeV}$

Spin-indep. gluon GFFs

Detmold, Pefkou, Shanahan, PRD 95 (2017), 114515

"Gravitational form factors"

Similarly complicated decomposition Three GFFs can be resolved for all momenta

Spin-indep. quark GFFs

0.0

-0.5

-1.0

-1.5

Detmold, Pefkou, Shanahan, PRD 95 (2017), 114515

GFF decomposition has precisely the same structure as in the spin-independent gluon case

Spin-indep. quark GFFs

Detmold, Pefkou, Shanahan, PRD 95 (2017), 114515

Gluon vs quark radius depends strongly on which aspect of structure is being probed

Nucleon spin-indep. gluon GFFs

Nucleon, $m_{\pi} \sim 450 \text{ MeV}$

Three spin-independent generalised form factors, one can be resolved from zero at present statistics

Dipole-like fall-off vs $|\Delta^2|$

Renormalisation + comparison with quark GFFs in progress

Gluon structure of nuclei

How does the gluon structure of a nucleon change in a nucleus? Ratio of structure function F_2 per nucleon for iron and deuterium

$$F_2(x,Q^2) = \sum_{q=u,d,s...} x e_q^2 \left[q(x,Q^2) + \overline{q}(x,Q^2) \right]$$
Number density of partons of flavour q

European Muon Collaboration (1983): "EMC effect"

Modification of per-nucleon cross section of nucleons bound in nuclei

Gluon analogue?

2

Nuclear glue, $m_{\pi} \sim 450 \text{ MeV}$

Look for nuclear (EMC) effects in the first moments of the spin-independent gluon structure function

Doubly challenging

- Nuclear matrix element
- Gluon observable (suffer from poor signal-to-noise)

Deuteron gluon momentum fraction

Ratio \propto matrix element for $0 \ll \overline{\tau} \ll t$

NPLQCD Collaboration PRD96 094512 (2017)

Gluon momentum fraction

NPLQCD Collaboration PRD96 094512 (2017)

- Matrix elements of the spin-independent gluon operator in nucleon and light nuclei
- Present statistics: can't distinguish from no-EMC effect scenario
- Small additional uncertainty from mixing with quark operators

Ratio of gluon momentum fraction in nucleus to nucleon

Gluon structure of nuclei

Exotic Glue

Contributions to nuclear structure from gluons not associated with individual nucleons in nucleus

Exotic glue operator:

nucleon $\langle p|\mathcal{O}|p\rangle = 0$ nucleus $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Jaffe and Manohar, "Nuclear Gluonometry" Phys. Lett. B223 (1989) 218

Non-nucleonic glue in deuteron

NPLQCD Collaboration PRD96 094512 (2017)

First moment of gluon transversity distribution in the deuteron, $m_{\pi} \sim 800 \text{ MeV}$

- First evidence for non-nucleonic gluon contributions to nuclear structure
- Hypothesis of no signal ruled out to better than one part in 10⁷
- Magnitude relative to momentum fraction as expected from large-N_c

Ratio \propto matrix element for $0 \ll \overline{\tau} \ll t$

Ratio of 3pt and 2pt functions

Gluon structure from LQCD

- Electron-lon collider will dramatically alter our knowledge of the gluonic structure of hadrons and nuclei
 - Work towards a complete 3D picture of parton structure (moments, x-dependence of PDFs, GPDs, TMDs)
 - $\Delta(x,Q^2)$ has an interesting role

Purely gluonic

Non-nucleonic: directly probe nuclear effects

- Compare quark and gluon distributions in hadrons and nuclei
- Lattice QCD calculations in hadrons and light nuclei will complement and extend understanding of fundamental structure of nature