Herwig 7

Stefan Gieseke

Institut für Theoretische Physik KIT

MCEGs for future ep and eA colliders Regensburg, 22–23 Mar 2018

Stefan Gieseke · MCEGs for future ep and eA colliders · Regensburg · 22-23 Mar 2018

pp Event Generator

pp Event Generator

Recent History of Herwig

• HERWIG 6.5 last Fortran (2002), minor updates 2013.

[Corcella et.al., hep-ph/0204123]

• Herwig++ 1.0. First C++ version, e^+e^- only.

[SG, A. Ribon, P. Stephens, M.H. Seymour, B.R. Webber, JHEP 0402 (2004) 005]

• Herwig++ 2.0β– Herwig++ 2.7

[SG et.al., Herwig++ 2.0 β Release Note, hep-ph/060206]

[SG et al., Herwig++ 2.0 Release Note, hep-ph/0609306]

[M. Bähr et al., Herwig++ 2.1 Release Note. 0711.3137]

[M. Bähr et al., Herwig++ 2.2 Release Note. 0804.3053]

[M. Bähr et al., Herwig++ 2.3 Release Note. 0812.0529]

[SG et al., Herwig++ 2.5 Release Note. 1102.1672]

[J. Bellm et al., Herwig++ 2.7 Release Note. 1310.6877]

from simple *pp* collisions up to fully-fledged LHC event generation. Many 'in-house' NLO matched calculations. Now,

 τ (Herwig++) $\approx \tau$ (fHERWIG) $\gtrsim 15$ years .

•

Want best of both worlds.

Parton shower for soft+collinear radiation (intra jet).

Hard, large angle radiation from matrix elements (hard jets).

Higher accuracy from higher orders, mostly NLO QCD corrections.

Herwig 7

New major release Herwig++ 3.0 aka Herwig 7.

Evolution of fHERWIG/Herwig++ subsumed as "7 > 6.5". "Better than fHERWIG in every aspect plus more".

"NLO for all hard processes."

[J. Bellm et.al., Eur.Phys.J. C76 (2016), 196]

[Herwig 7.1 Release Note, arXiv:1705.06919]

Matchbox in Herwig 7

- Workinghorse of all NLO efforts in Herwig 7.
- Interfaces to various programs.
- Formalism and code to generate matched/merged events.

What's in Matchbox?

- Matching/merging formalism completely generic.
- Two showers
 - Angular ordered shower.
 - Catani–Seymour dipoles.
- Two matching formalisms
 - MC@NLO like.
 - POWHEG like.
- Many interfaces to (automatic) NLO programs.
- Automatic CS subtraction terms.
- Improved phase space.

ME Interfaces to Herwig

Everything pre-installed and called internally from Herwig!

- Amplitude level
 - Hand-coded MEs
 - Hjet++ [F. Campanario, T. Figy, S. Plätzer, M. Sjödahl]
 - MadGraph5
 - Colour correlations with ColourFull
- Squared amplitude level
 - GoSam
 - OpenLoops
 - NJet
 - VBFNLO
- Some ME already built-in
 - Important SM processes
 - BSM internally with specified model
 - UFO interface
 - Spin correlations in 2- and 3-body decays.

[MadGraph, SG, S. Plätzer, J. Bellm]

[GoSam & J. Bellm, SG, S. Plätzer, C. Reuschle]

[OpenLoops & J. Bellm, SG, S. Plätzer]

[NJet & S. Plätzer]

[S. Plätzer, M. Sjödahl]

[VBFNLO & J. Bellm, SG, S. Plätzer]

[[]M. Gigg, P. Richardson, EPJ C51 (2007) 989]

Two parton showers

Angular ordered shower

[SG, P. Stephens, B. Webber, JHEP 0312 (2003) 045]

- Angular ordering from \tilde{q}
- Phase space somewhat focused on collinear region
- No full coverage
- Colour coherence by construction
- \times two NLO matching schemes.

Merging with dipole shower.

Intrinsic systematic studies of parton shower uncertainties within one framework. [J. Bellm *et.al.*, EPJC76 (2016) 665]

Dipole shower

[S. Plätzer, SG, EPJC72 (2012) 2187]

- Catani-Seymour dipoles
- NLO Matching inspired
- evolution in p_{\perp}
- full phase space
- Colour coherence

Not many serious studys of DIS with LHC-era event generators Not many HERA results available in Rivet Would give important insights also for current LHC studies Use VBF-type processes as template for DIS type physics

VBF example

 W^+W^- + 2 jets NLO (VBFNLO+Herwig 7):

•
$$y^* = y_3 - \frac{y_1 + y_2}{2}$$

- Shower mostly forward.
- μ_R, μ_F ren./factorization scales.
- μ_Q shower scale.
- All varied by factor 2.

Extrapolation between central (hard) and forward (shower) region.

[M. Rauch, S. Plätzer, EPJC 77 (2017) 293]

VBF example

[VBSCAN (M. Rauch), to appear]

New approach in Herwig++/Matchbox. [S. Plätzer, JHEP 1308 (2013) 114]

Idea: Approximation of Sudakov " $\Delta \approx 1 - \int BP$ " violates parton shower unitarity. Replace *BP* by full LO matrix element also in reweighting of events.

Leads to unified NLO matching and (LO/NLO)-merging prescription [J. Bellm, SG, S. Plätzer, EPJC 2018]

Unitarized Merging

Consider parton shower acting on Born ME,

$$PS[B_0] = \Delta^0_{\mu} B_0 + PS[P_1 \Delta^1_0 B_0] ,$$

iterate once,

$$PS[B_0] = \Delta^0_\mu B_0 + \Delta^1_\mu P_1 \Delta^0_1 B_0 + PS[P_2 \Delta^1_2 P_1 \Delta^0_1 B_0] ,$$

replace

$$P_1 B_0 o rac{lpha_S(q_1)}{lpha_S(q_0)} B_1 \;,$$

etc., but induces unitarity violation in Sudakov weights, so

$$\Delta^1_\mu pprox 1 - P_1 B_0
ightarrow 1 - rac{lpha_{\mathcal{S}}(q_1)}{lpha_{\mathcal{S}}(q_0)} B_1 \; .$$

Stefan Gieseke · MCEGs for future ep and eA colliders · Regensburg · 22-23 Mar 2018

Unitarized Merging

Z+jets, W+jets.

[[]J. Bellm, SG, S. Plätzer, EPJC 2018]

 $Z(0^*, 1^*, 2) \rightarrow Zj@NLO$ in hard region. Soft region very stable. $W(0^*, 1^*, 2)$ describes jet correlations. Still large MPI content.

$eq \rightarrow eq$ at LO and with NLO-merging vs H1 data.

[H1, EPJC12 (2000) 595]

Stabilization with higher orders.

MPI model

Multiple partonic interactions will become important in photo production events ($Q^2 \rightarrow 0$). (Note: no photon pdf in latest LHAPDF!)

In Herwig: hard MPI = multiple QCD 2 \rightarrow 2 processes soft MPI = production of soft particles (flat in *y*, narrow in p_{\perp}) soft diffraction (with a hard tail...)

Good results for Min Bias and UE observables.

[M. Bähr, SG, M.H. Seymour, JHEP 0807 (2008) 076]

[SG, C. Röhr, A. Siodmok, EPJC72 (2012) 2225]

[SG, F. Loshaj, P. Kirchgaeßer, EPJC77 (2017) 156]

[SG, P. Kirchgaeßer, S. Plätzer, EPJC78 (2018) 99]

Overlap function

 \Rightarrow Two main parameters: μ^2 , p_t^{\min} .

Extending into the soft region

Continuation of the differential cross section into the soft region $p_t < p_t^{\min}$ (here: p_t integral kept fixed)

Colour Reconnection — idea

Two uncorrelated hard interactions

Colour Reconnection — idea

Two uncorrelated hard interactions

Colour Reconnection — idea

Possible rearrangement of colour lines with P_{reco} .

Diffractive final states

Strictly low mass diffraction only. Allow M^2 large nonetheless. M^2 power-like, *t* exponential (Regge).

 $pp \rightarrow (\text{baryonic cluster}) + p$.

Hadronic content from cluster fission/decay $C \rightarrow hh...$ Cluster may be quite light. If very light, use directly

 $pp \rightarrow \Delta + p$.

Also double diffraction implemented.

 $pp \rightarrow (cluster) + (cluster) \qquad pp \rightarrow \Delta + \Delta$.

Technically: new MEs for diffractive processes set up.

Tuned results

ATLAS Min Bias 7 TeV.

[ATLAS, New.J.Phys. 13 (2011) 053033]

Similar to previous results, "harder part of Min Bias".

Stefan Gieseke · MCEGs for future ep and eA colliders · Regensburg · 22–23 Mar 2018

Tuned results

ATLAS Min Bias 7 TeV.

[ATLAS, New.J.Phys. 13 (2011) 053033]

Tuned results

ATLAS Min Bias 7 TeV.

[ATLAS, New.J.Phys. 13 (2011) 053033]

Stefan Gieseke · MCEGs for future ep and eA colliders · Regensburg · 22-23 Mar 2018

Rapidity based colour reconnection

Colour singlets not only from $q\bar{q}$ but also from qqq states

But, baryonic clusters would typically be much heavier

$$M_{ijk} + M_{lmn} > M_{il} + M_{jm} + M_{kn}$$

would always/often be reconnected into mesonic clusters.

Rapidity based colour reconnection

"Closeness" of quarks not based on invariant mass but on proximity in momentum space.

Consider other quarks' movement based on their rapidity in reference clusters' CM frame.

Results

Idea seems to work.

Stefan Gieseke · MCEGs for future ep and eA colliders · Regensburg · 22–23 Mar 2018

Results

[ALICE, EPJ C75 (2015) 226]

Strangeness difficult. $g \rightarrow s\bar{s}$ splitting.

Results

[ALICE, EPJ C75 (2015) 226]

Stefan Gieseke · MCEGs for future ep and eA colliders · Regensburg · 22-23 Mar 2018

Today's event generators are very sophisticated tools.

NLO, Matching, Merging, MPI well under control

DIS still immature, but huge potential (\rightarrow VBF)

First steps with ion collisions are being made

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!

Application rounds every 3 months.

MCnet projects Pythia+Vincia Herwig Sherpa MadGraph "Plugin" – Ariadne+HEJ CEDAR – Rivet+Professor +Contur+hepforge+...

on Monte Carlo Event Generators for Large Hadron Collider

Stefan Gieseke · MCEGs for future

Extra Slides

Stefan Gieseke · MCEGs for future ep and eA colliders · Regensburg · 22-23 Mar 2018

Matching MC and NLO on one slide

Solution: subtract doubly counted terms.

$$\langle O \rangle_{\rm NLO} = BO(0) + \bar{V}O(0) + \int_0^1 dx \, \frac{O(x)R(x) - O(0)A(x)}{x}$$
$$\langle O \rangle_{\rm PS} = BO(0) \left[1 - \int_\mu \frac{dx}{x} P(x) \right] + \int_\mu dx O(x) B \frac{P(x)}{x}$$

Matching MC and NLO on one slide

Solution: subtract doubly counted terms.

$$\langle O \rangle'_{\text{NLO}} = BO(0) + \bar{V}O(0) + \int_0^1 dx \, \frac{O(x)R(x) - O(0)A(x)}{x} \\ + \int_\mu \frac{dx}{x} P(x) - \int_\mu dx \, O(x) B \frac{P(x)}{x}$$

Matching MC and NLO on one slide

Solution: subtract doubly counted terms.

$$\langle O \rangle'_{\rm NLO} = BO(0) + \bar{V}O(0) + \int_0^1 dx \, \frac{O(x)R(x) - O(0)A(x)}{x} \\ + \int_\mu \frac{dx}{x} P(x) - \int_\mu dx \, O(x) B \frac{P(x)}{x}$$

Result ("MC@NLO master formula")

$$\begin{split} \langle O \rangle_{\text{MC@NLO}} = &O(0) \left[B + \bar{V} + \int_0^1 dx \, \frac{BP(x) - A(x)}{x} \right] \\ &+ \int dx \, O(x) \frac{R(x) - BP(x)}{x} \; . \end{split}$$

Note: $(O(0)B \otimes \text{parton shower})$ adds back subtracted terms \Rightarrow NLO result is exactly reproduced after parton shower.

"Classic" MC and NLO

Implemented as subtractive matching in MC@NLO package

[Frixione, Webber, JHEP 0206:029,2002.]

[Frixione, Nason, Webber, JHEP 0308:007,2003.]

With modified Sudakov form factor as POWHEG/POWHEG-box

[Nason, hep-ph/0409146; Nason, Ridolfi hep-ph/0606275]

[Frixione, Nason, Ridolfi, 0707.3081, 0707.3088; Frixione, Nason, Oleari, 0709.2092]

Both methods/packages used with Herwig++ as well.

Number of processes implemented independently into Herwig++ with truncated shower.

In view of "NLO revolution": can we go beyond?