

Superconducting Cables

Prof. Dr.-Ing. Mathias Noe, Karlsruhe Institute of Technology Institute for Technical Physics EASITrain Summer School, September 3rd-7th 2018, Vienna

KIT-ZENTRUM ENERGIE

Table of Content

- Benefits of Superconducting Cables
- AC Cables
 - Different Cable Types
 - State-of-the-Art
 - AmpaCity Project
 - Design Example
- Summary

Benefits of Superconducting AC Cables

User

- Higher transmission capacity at lower voltage
 - Avoid high voltage equipment in urban areas
- Higher transmission capacity at lower diameter
 - Flexible laying, less underground work
- Three phases in one cable up to high capacities
 - Less right of way, fast cable laying, less underground work

Environment

- Electromagnetic compatible
- Potential of lower losses
- No ground heating

Operation

- Low impedance
- Operation at natural load

Enables unique cable systems and new power system structures

Table of Content

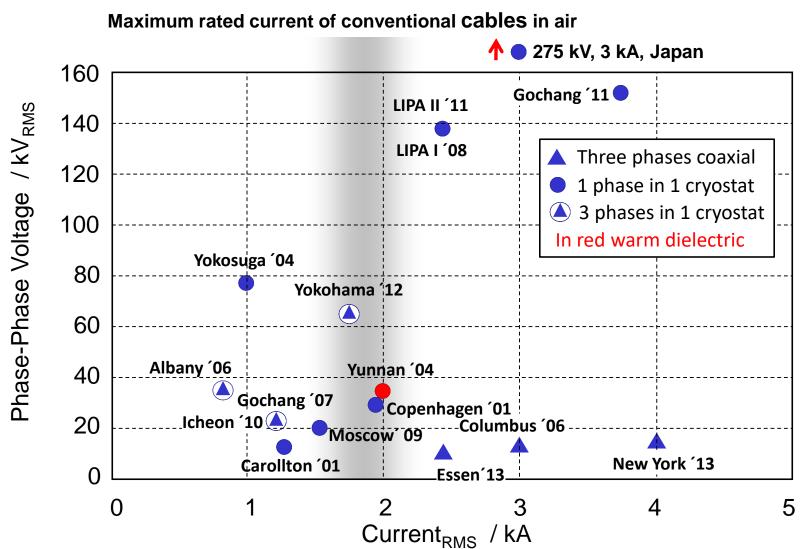
- Benefits of Superconducting Cables
- AC Cables
 - Different Cable Types
 - State-of-the-Art
 - AmpaCity Project
 - Design Example
- Summary

General Setup – Outer Protection, extruded PE

	Three single phases	Three phase in one cryostat	Three phase concentric
Voltage level	High voltage > 110 kV	30-110 kV	10-50 kV
Amount of superconductor	higher	higher	smaller
Cryostat loss	higher	smaller	smaller

Table of Content

Benefits of Superconducting Cables


AC Cables

- Different Cable Types
- State-of-the-Art
- AmpaCity Project
- Design Example

Summary

Superconducting AC Cables State-of-the-Art of HTS AC Cable Field Tests

8

Superconducting AC Cables State-of-the-Art

Columbus

Ultera 13.2 kV, 3 kA, 200 m Triaxial[™] Design **BSCCO 2223** Energized 2006 High reliability

9

Nexans 138 kV, 2.4 kA, 600 m Single coaxial design **BSCCO 2223** Energized 2008

Figure:

Ultera

LIPA

Figure: Nexans

Gochang

22.9 kV, 50 MVA, 100 m **BSCCO 2223 Energized 2007** 500 m field test with YBCO in 2011

Superconducting AC Cables

State-of-the-Art

Manufacturer	Place ,Country, Year	Data	HTS
??	Chicago, US	12 kV, a few miles	??
LS Cable	Seoul, Korea, 2017	22.9 kV, 1000 m	YBCO
Nexans	Essen, Deutschland, 2014	10 kV, 2.4 kA, 1000 m	BSCCO
Sumitomo	Yokohama, Japan, 2013	66 kV, 1.8 kA, 240 m	BSCCO
LS Cable	Icheon, Korea, 2011	22.9 kV, 3.0 kA, 100 m	BSCCO
LS Cable	Icheon, Korea, 2009	22.9 kV, 1.3 kA, 500 m	BSCCO
Nexans	Long Island, US, 2008	138 kV, 2.4 kA, 600 m	BSCCO/YBCO
LS Cable	Gochang, Korea, 2007	22.9 kV, 1.26 kA, 100 m	BSCCO
Sumitomo	Albany, US, 2006	34.5 kV, 800 A, 350 m	BSCCO
Ultera	Columbus, US, 2006	13.2 kV, 3 kA, 200 m	BSCCO
Sumitomo	Gochang, Korea, 2006	22.9 kV, 1.25 kA, 100 m	BSCCO
Furukawa	Yokosuka, Japan, 2004	77 kV, 1 kA, 500 m	BSCCO

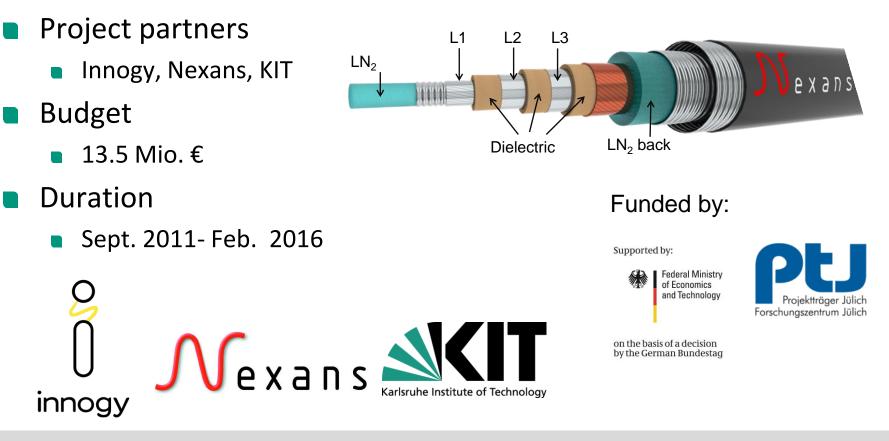
More than 10 years of operational experience and no HTS degradation reported.

Table of Content

Benefits of Superconducting Cables

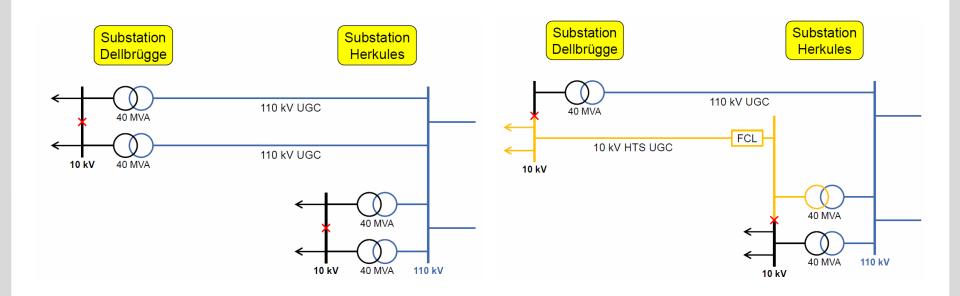
AC Cables

- Different Cable Types
- State-of-the-Art
- AmpaCity Project
- Design Example


Summary

Status Ampacity Project

- Objectives
 - Built and test a 40 MVA, 10 kV, 1 km superconducting cable in combination with a fault current limiter


Status Ampacity Project

Conventional Situation in Essen

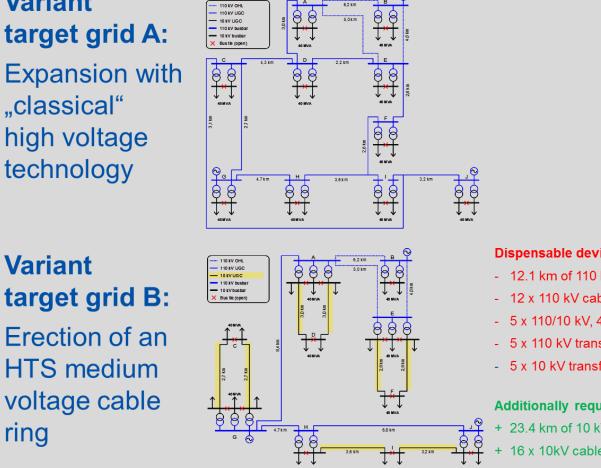
HTS Cable plus FCL Situation in Essen

A transformer and a high voltage cable can be replaced by a medium voltage HTS cable in combination with a fault current limiter.

Pre-study Ampacity Project

Variant target grid A:

Expansion with "classical" high voltage technology


Erection of an

HTS medium

voltage cable

Variant

ring

Dispensable devices for a new grid concept

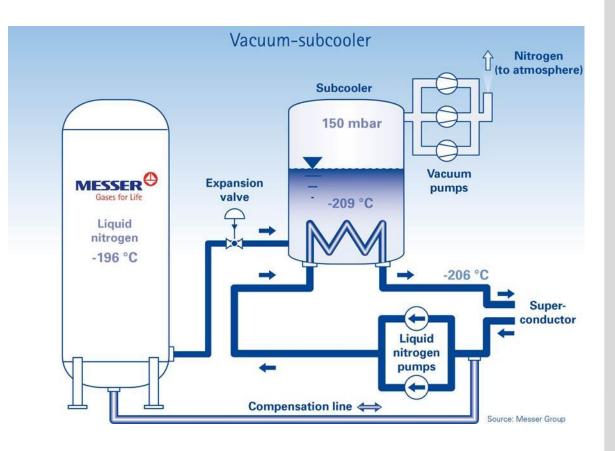
- 12.1 km of 110 kV cable systems
- 12 x 110 kV cable switchgear
- 5 x 110/10 kV, 40 MVA transformers
- 5 x 110 kV transformer switchgear
- 5 x 10 kV transformer switchgear

Additionally required devices

- + 23.4 km of 10 kV HTS cable system
- 16 x 10kV cable switchgear
- 3 x 10 kV bus ties

AmpaCity Cooling Unit

Liquid nitrogen is used


- as heat transfer medium

- as cooling agent
- LIN is pumped through the superconducting cable

LIN is recooled in the subcooler (to -206°C)

LIN vaporizes at 150 mbar(a) (forced by vacuum pumps)

LIN temperature decreases to -209°C (expansion through the regulation valve)

Source: F. Herzog, et.al., "Cooling unit for the AmpaCity project – One year successful operation", Cryogenics Volume 80, Part 2, December 2016, Pages 204-20, DOI: 10.1016/j.cryogenics.2016.04.001

AmpaCity Cooling Unit

Energy-data comparison (regular operation point)

Cable-cooling demand: Total required cooling capacity: Liquid nitrogen consumption:

Required electricity for N2-liquefying: 33	3 kW
Exergetic effect LIN transport (130 km): 1	. kW
Pel. (vacuum pumps): 5	5 kW
Pel. (other equipment): 4	<u>kW</u>

total: 43 kW at RT

for comparison:

Pel. for mechanical cooling:

*(dependant on the availability of cooling water)

75 to 100 kW*

MESS

1.8 kW (@ 67 K)

3.4 kW (@ 64 K)

68 kg/h

Gases for Life

AmpaCity Cooling Unit

10,000 V

40,000 kW

1.8 kW (@ 67 K)

HTS-Cable

Voltage

Capacity

Ccooling demand (actual):

Cooling unit

Cooling capacity – delivered:

Cooling capacity - total:

Liquid nitrogen consumption:

Pel.

actual → design 1.8 kW (@ 67 K) → 4.0 kW 3.4 kW (@ 64 K) → 5.6 kW 68 kg/h → 110 kg/h 9 kW → 13 kW

<u>Redundancy</u>

- 2 circulation pumps (instead of 1)
- 3 vacuum pumps (instead of 2)

almost 100% redundany with 5% additional investment

Source: F. Herzog, et.al. , "Cooling unit for the AmpaCity project – One year successful operation", Cryogenics Volume 80, Part 2, December 2016, Pages 204-20, DOI: 10.1016/j.cryogenics.2016.04.001

Status Ampacity Project

Lessons learned

- The unsymmetrical capacitances need compensation.
- A few leaks have been fixed right after commissioning but during operation.
- The disconnection scheme after a short-circuit with an open-close cycle was changed.

Major result

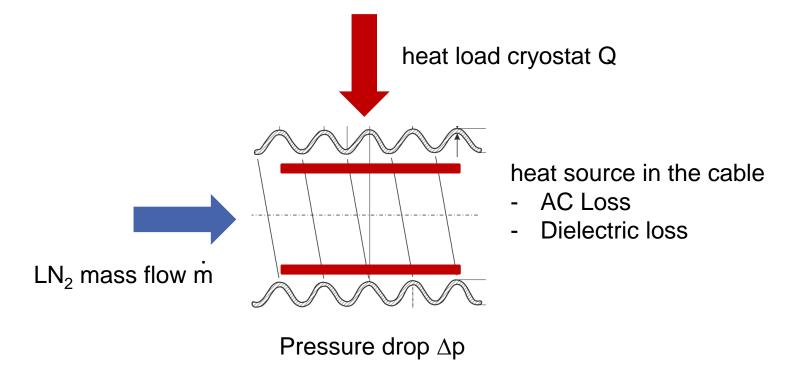
The cable and FCL installation fulfills all technical and operational requirements.

Status

- The operation has been extended.
- Business cases are under development.

Table of Content

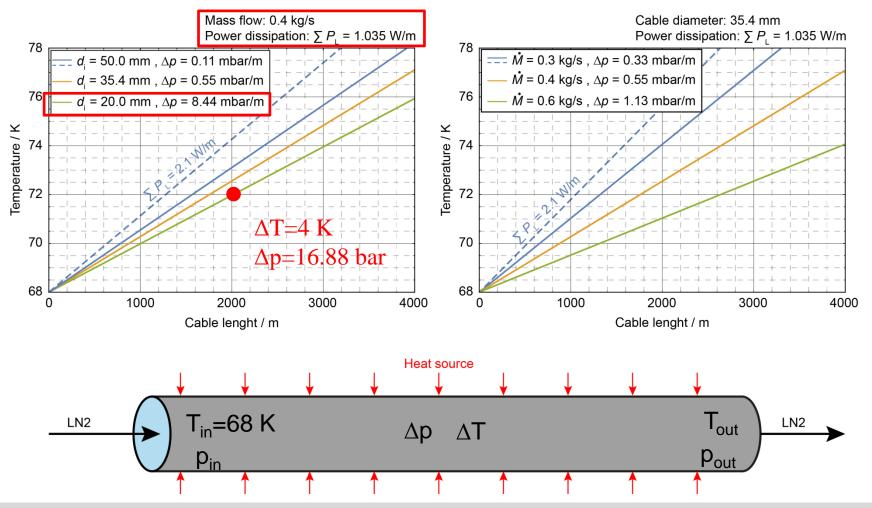
Benefits of Superconducting Cables


AC Cables

- Different Cable Types
- State-of-the-Art
- AmpaCity Project
- Design Example
- Summary

Introduction

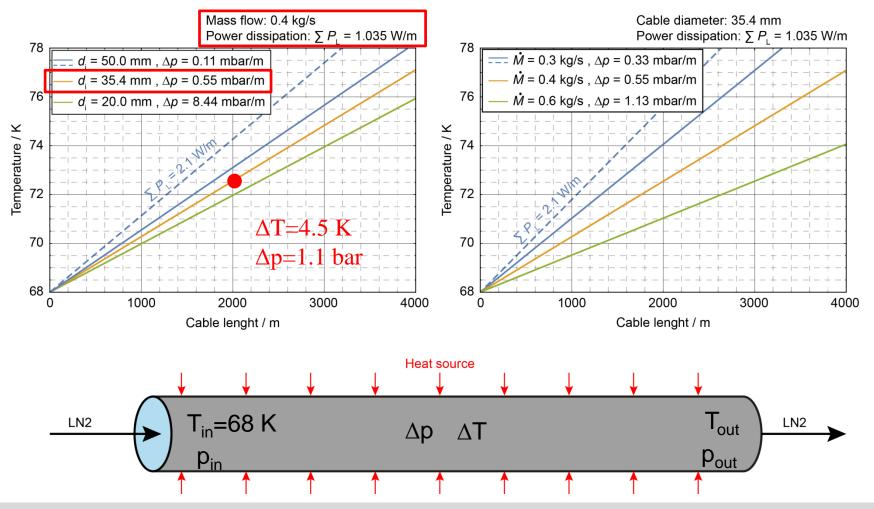
Pressure drop and temperature increase in a cable


Temperature increase ΔT

In comparison to conventional cables the cable length has a major influence on the cable design.

Introduction

Source: E. Shabagin, C. Heidt, S. Strauß, S. Grohmann, Modelling of 3D temperature profiles and pressure drop in concentric three-phase HTS power cables, Cryogenics 81, 2017, 24-32


Pressure drop and temperature increase in a cable

Introduction

Source: E. Shabagin, C. Heidt, S. Strauß, S. Grohmann, Modelling of 3D temperature profiles and pressure drop in concentric three-phase HTS power cables, Cryogenics 81, 2017, 24-32

Pressure drop and temperature increase in a cable

Major Requirements

Rated Voltage

It is the maximum rms value of voltage that the equipment can withstand permanently. IEC 60071-1, e.g. 12, 24 kV in medium voltage level in Germany.

Rated Power

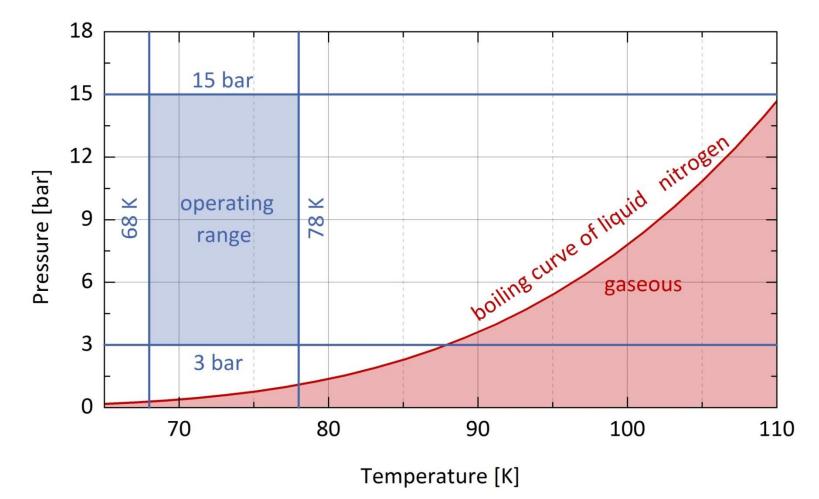
The power rating of equipment is the highest contineous power input allowed to flow through the equipment.

Overcurrents

In an electric power system, overcurrent is a situation where a larger than rated electric current exists for a certain time. For example short-circuit.

Utility Load Factor

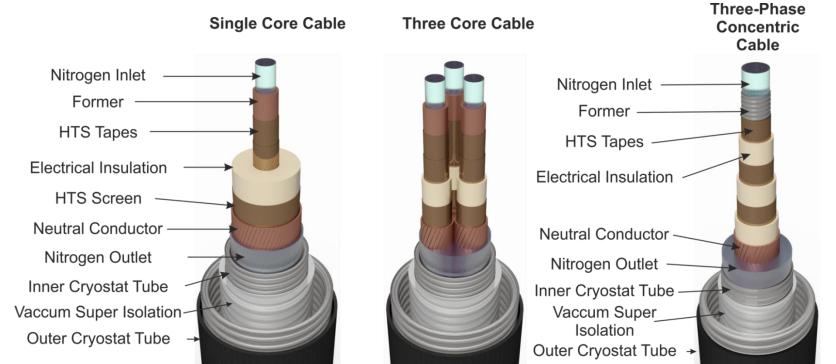
The load factor is defined as the average load divided by the peak load in a specified time period. It can be derived from the load profile.


Maximum outer diameter of the cable – self explaining

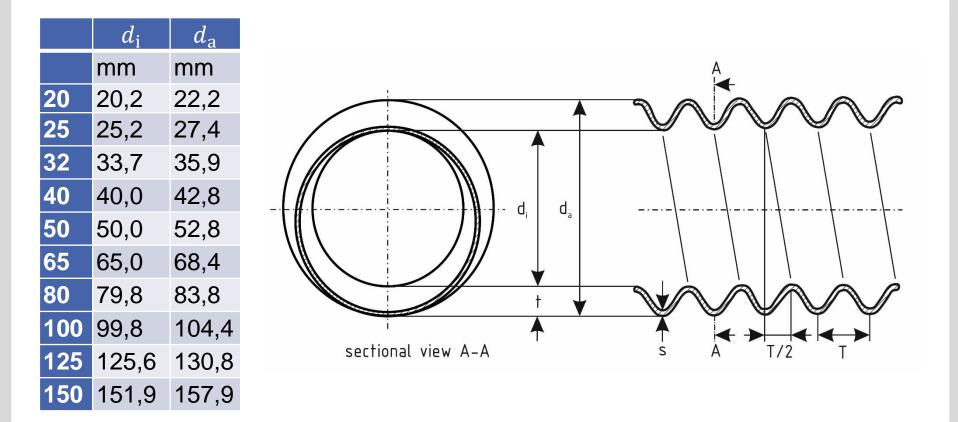
Length of the cable – self explaining

This data is provided by the utility

Temperature and Pressure Requirements



Define operating range for pressure and temperature.



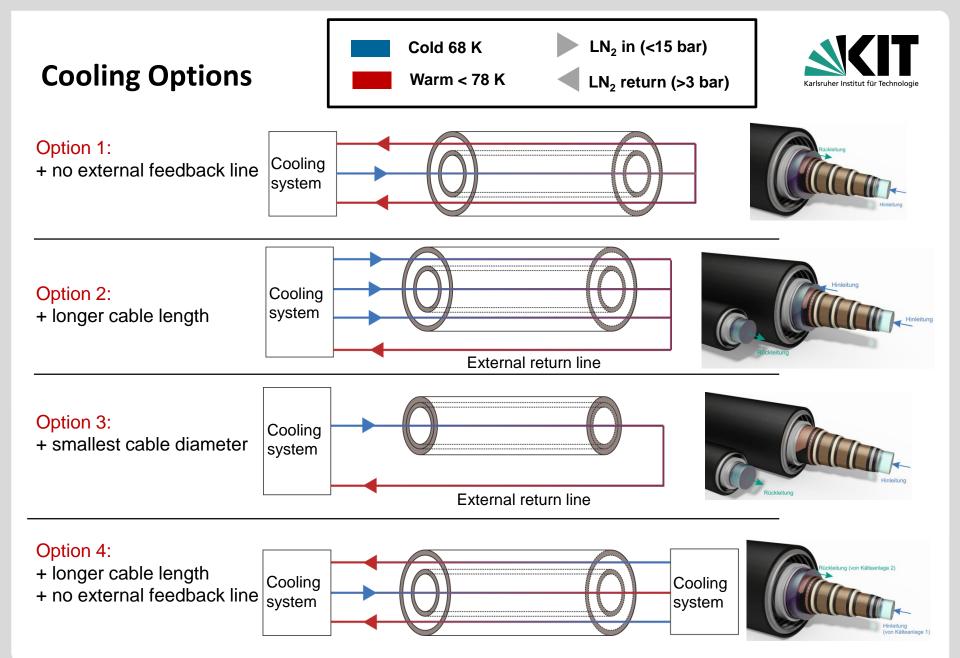
	Three single phases	Three phase in one cryostat	Three phase concentric
Voltage level	High voltage > 110 kV	30-110 kV	10-50 kV
Amount of superconductor	higher	higher	smaller
Cryostat loss	higher	smaller	smaller
Select cable type			

Select cable type.

Standard Dimensions for Flexible Tubes

Standard dimensions in Germany according to DIN EN 10380.

Design Example – Medium Voltage Cable


Rated Voltage	12 kV
Rated Power	30 MVA
Overcurrents	20 kA for 1 s 50 kA for 30 ms
Utility Load Factor	0.7 continous load
Max. Outer Diameter	105 mm
Length	2.6 km

Typical data for urban area power system in Germany.

Next steps

- Start with diameter of LN₂ inner tube.
- Put enough HTS tapes to carry the current.
- Calculate max. electrical field.
- Calculate the AC losses and cryogenic losses.

Cable Loss Option 3 (inner LN₂ diameter 25 mm)

Locc component	Loss	Loss	Loss
Loss component	$0,1 \cdot I_{\mathrm{N}}$	$0,5 \cdot I_{\rm N}$	$1 \cdot I_{N}$
Cooling Power	9037 W	9061 W	9379 W
AC Loss	0,0 W	12 W	290 W
Cryostat ¹⁾	8840 W	8840 W	8840 W
Current leads	117 W	130 W	169 W
Terminal cryostat	80 W	80 W	80 W
Loss at RT	143,4 kW	143,8 kW	148,9 kW

1) For option 3 with 1,6 W/m for return line 1,9 W/m for cable cryostat.

Loss Energy per Year* Option 3 (inner LN₂ diameter 25mm)

Loss component	Load factor 0.7	Load factor 1	
AC loss	15 MWh	40 MWh	
Current lead thermal	16 MWh	16 MWh	
Current lead electrical	5 MWh	7 MWh	
Cable cryostat	1229 MWh	1229 MWh	
Terminal cryostat	11 MWh	11 MWh	
Total loss energy per year	1276 MWh	1304 MWh	

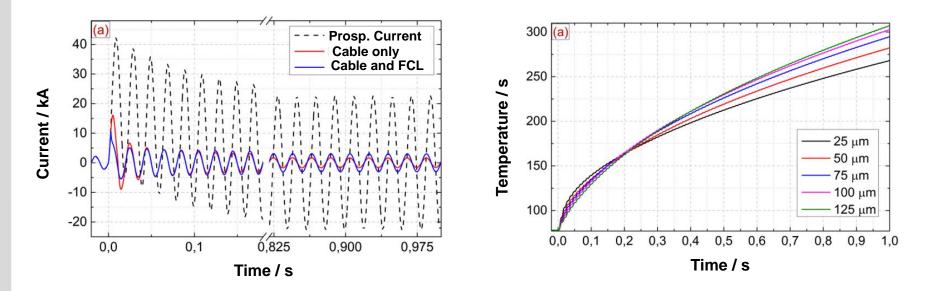
*without pumps and auxiliary systems

For calculation of loss energy per year see: Kottonau et. al, IEEE Transactions on Applied Superconductivity, Vol. 27., Issue 4, 2017, DOI: 10.1109/TASC.2017.2652856

Maximum Cable Length for Option 3

	Radius inner LN ₂ tube				
Radius inner cryostat	Mass flow	20 mm (25 mm	32 mm	40 mm
	$\dot{M} = 0,25 \text{ kg/s}$	X	X	X	X
65 mm	$\dot{M} = 0,5 \text{ kg/s}$	X	3420 m	X	X
	$\dot{M} = 0,75 \text{ kg/s}$	X	X	X	X
	$\dot{M} = 1 \text{ kg/s}$	X	X	X	X
	$\dot{M} = 0,25 \text{ kg/s}$	X	X	X	X
80 mm	$\dot{M} = 0.5 \text{ kg/s}$	X	3920 m	4210 m	X
	$\dot{M} = 0,75 \text{ kg/s}$	X	X	6210 m	X
	$\dot{M} = 1 \text{ kg/s}$	X	X	X	X

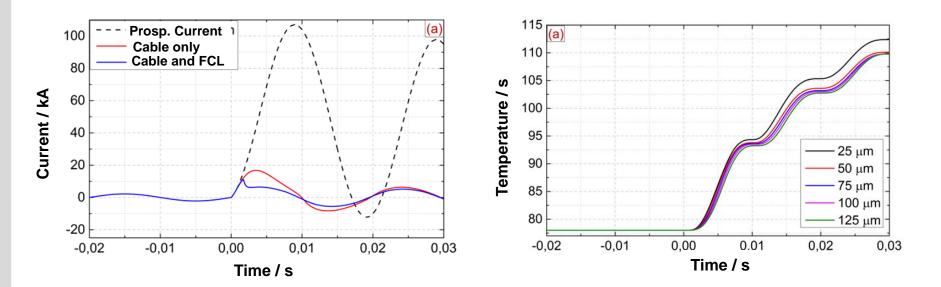
X Temperature increase higher than 78 K or pressure drop larger than 12 bar


With an inner LN₂ tube of 25 mm and an inner cryostat tube of 65 mm all requirements are fullfilled.

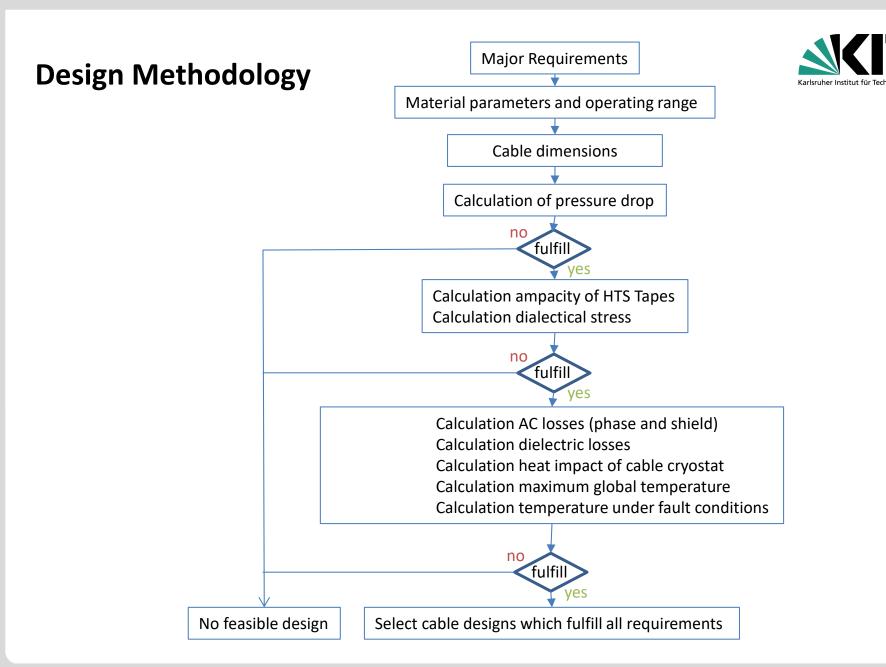
Short-Circuit Behaviour (20 kA, 1 s)

Short-circuit Current (Cu=25 μm)

HTS Temperature Increase


In case the temperature would be to high an SFCL can be considered.

Short-Circuit Behaviour (50 kA, 30 ms)



Short-circuit Current (Cu=25 μm)

HTS Temperature Increase

Short-circuit with 20 kA, 1 s leads to higher temperature increase.

Design Summary

Rated Voltage	12 kV
Rated Power	30 MVA
Overcurrents	20 kA for 1 s 50 kA for 30 ms
Utility Load Factor	0.7 continous load
Max. Outer Diameter	105 mm
Length	2.6 km

Main data	
Capacitance	1.47 μF/km
Inductance	0.029 mH/km
Inner LN ₂ tube diameter	25 mm
Inner Cryostat diameter	65 mm
Smallest cable diameter	104.6 mm

Option 3

Table of Content

- Benefits of Superconducting Cables
- AC Cables
 - Different Cable Types
 - State-of-the-Art
 - AmpaCity Project
 - Design Example
- Summary

Superconducting Cables

Research Direction

- Lower cost and higher performance of HTS material
- Improved thermal insulation at reduced cost
- Work on standards (e.g. How to perform a routine or factory test of HTS cables?)
- Demonstrate reliability and availability in long-term field installations
- More superconducting cable installations.

Superconducting cables are close to commercialization.