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Some useful formulas:

magnetic moment of a current loop

[Am2]

magnetizationof a sample [A/m]

alternative (preferred in [T]

SC community)

Measurable quantities:

magnetic field B [T] ïHall probe, NMR

voltagefrom a pick-up coil [V]
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Superconductors used in magnets - what is essential?

type II. superconductor (critical field)

high transport current density



Superconductors used in magnets - what is essential?

type II. superconductor (critical field)

mechanism(s) hindering the change of magnetic field distribution

=> pinning of magnetic flux = hard superconductor

gradient in the flux density 

pinning of flux quanta

distribution persists in static regime (DC field), but would

require a work to be changed

=> dissipation in dynamic regime
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macroscopic behavior described by the 

critical state model [Bean 1964]:

local density of electrical current in hard superconductor is

either 0 in the places that have not experienced any electric field

or it is the critical current density, jc , elsewhere

in the simplest version (first approximation) jc =const.

(repulsive) interaction of flux quanta

=> flux line lattice

summation of microscopic pinning forces 

+ elasticity of the flux line lattice

= macroscopic pinning force density Fp [N/m3]
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Transport of electrical current

e.g. the critical current measurement
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Transport of electrical current

e.g. the critical current measurement

0 A 20 A 100 A

80 A 20 A 0 A

j =+ jc

j =- jc

j =0

I

persistentmagnetization 
current



Transport of electrical current

AC cycle with Ia less than Ic : neutral zone

80     ­ 60     ­ -80     ­ -60     ­ 0  A

persistent 
magnetization 
current
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check for hysteresis in I vs. F plot

AC transport in hard superconductor is not dissipation-less (AC loss)



AC transport loss in hard superconductor

hysteresis  ­ dissipation ­ AC loss
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Hard superconductor in changing magnetic field
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volume loss density Q [J/m3]

magnetization:

(2D geometry)

Hard superconductor in changing magnetic field

dissipationbecause of flux pinning
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Round wire from hard superconductor in changing magnetic field
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Round wire from hard superconductor in changing magnetic field
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(infinite) slab in parallel magnetic field ïanalytical solution 

saMBQ 4º

j

B penetration field

w

2
0

w
jB cp m=

î
î

í

îî

ì

ë

-

=
2

3

0

3

4
2

3

2

1

pap

p

a

BBB

B

B

V

Q

m

024 m

p

cs

Bw
jM ==

for Ba<Bp

for Ba>Bp



Slab in parallel magnetic field ïanalytical solution 

saMBQ 4º
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Two parallel superconducting wires in metallic matrix

couplingcurrents

Ba

0       ­ 20           ­ 80           ­ 60 mT

in the case of a perfect coupling:



Magnetization of two parallel wires
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Magnetization of two parallel wires
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Composite wires ïtwisted filaments 
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Composite wires ïtwisted filaments 
coupling currents (partially) screen the applied field

BBB exti
#t-=

t- time constant of the magnetic flux diffusion

2

0

22 öö
÷

õ
ææ
ç

å
=

pr

m
t

p

t

l

22

0

2

max

1

2

tw

pwt

m +
=

B

V

Q

22

0

0

2

max

1 tw

pwtc

m +
=

B

V

Q

round wire

A.Campbell (1982) Cryogenics 22 3

K. Kwasnitza, S. Clerc (1994) Physica C 233 423

K. Kwasnitza, S. Clerc, R. Flukiger, Y. Huang (1999)

Cryogenics 39 829 

Bext

t

Bi

in AC excitation
shape factor

(~ aspect ratio)



Outline:

1. Hard superconductor in varying magnetic field

2. Magnetization currents: Flux pinning

Coupling currents

3. Possibilities for reduction of magnetization currents

4. Methods to measure magnetization and AC loss



Persistent currents:

at large fields proportional to Bp ~ jc w

= magnetizationreduction by either lower jc or reduced w

lowering of jc would mean more superconducting material 
required to transport the same current

thus only plausible way is the reduction of w 

width of superconductor 

(perpendicular to the applied 

magnetic field)



effect of the field orientation
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Magnetization loss in strip with aspect ratio 1:1000
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in the case of flat wire or cable the orientation is not a free parameter

= reduction of the width 

e.g. striation of CC tapes

B
B

~ 6 times lower magnetization



striation of CC tapes

but in operation the filaments are connected at magnet terminations

B
B

coupling currents will appear

=> transposition necessary



Coupling currents:

at low frequencies proportional to the time constant of 
magnetic flux diffusion

= filaments (in single tape) or strands (in a cable)

should be transposed

= low loss requires high inter-filament or inter-strand 
resistivity

but good stability needs the opposite

transposition length

effective transverse resistivity
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Different methods necessary to investigate

Å Wire (strand, tape)

Å Cable

Å Magnet

relevant information can 

be achieved in harmonic 

regime

final testing necessary in 

actual regime

shape of the excitation field (current) pulse

transition unipolar harmonic 



ideal magnetization loss measurement:
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Method 1: double pick-up coil system with an electronic integrator :

measuring coil, compensating coil
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Harmonic AC excitation ïuse of complex susceptibilities
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Method 2: Lock-in amplifier

ïphase sensitive analysis of voltage signal spectrum

in-phase and out-of-phase signals
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Method 2: Lock-in amplifier ïonly at harmonic AC excitation
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Real magnetization loss measurement:

Pick-up coil

sample

Calibration necessary

ñ= tuCM d

by means of:

measurement on a sample

with known properrties

calibration coil

numerical calculation

é



AC loss can be determined from the balance of energy flows

AC power 

supply
AC power flow

AC loss in 

SC object



Solution 1- detection of power flow to the sample

AC power 

supply
AC power flow

AC loss in 

SC object



Solution 2- elimination of parasitic power flows

AC power 

supply
AC power flow

AC loss in 

SC object



Loss measurement from the side of AC power supply:

Bmsample UIP =

Urog

UB

Icoils

B
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