AC loss in superconductors

Fedor Gömöry Institute of Electrical Engineering Slovak Academy of Sciences Dubravska cesta 9, 84101 Bratislava, Slovakia

elekgomo@savba.sk www.elu.sav.sk

Some useful formulas:

magnetic moment of a current loop

$$\vec{m} = \vec{IS}$$
 [Am²]

magnetization of a sample

$$\vec{M} = \frac{\angle m}{V} \text{ [A/m]}$$

alternative (preferred in SC community)

$$\vec{M} = \mu_0 \frac{\sum \vec{m}}{V}$$
 [T]

Measurable quantities:

magnetic field B [T] – Hall probe, NMR

voltage from a pick-up coil [V]

$$u_{i} = -\frac{\mathrm{d}\Psi}{\mathrm{d}t} \approx -N\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -NS\frac{\mathrm{d}\overline{B}}{\mathrm{d}t}$$

linked magnetic flux number of turns

area of single turn

Outline:

1. Hard superconductor in varying magnetic field

2. Magnetization currents: Flux pinning Coupling currents

- 3. Possibilities for reduction of magnetization currents
- 4. Methods to measure magnetization and AC loss

Outline:

- 1. Hard superconductor in varying magnetic field
- 2. Magnetization currents: Flux pinning Coupling currents
- 3. Possibilities for reduction of magnetization currents
- 4. Methods to measure magnetization and AC loss

Superconductors used in magnets - what is essential? type II. superconductor (critical field) high transport current density

Superconductors used in magnets - what is essential?

type II. superconductor (critical field)

mechanism(s) hindering the change of magnetic field distribution

=> pinning of magnetic flux = hard superconductor

gradient in the flux density

$$\frac{\partial B_z}{\partial x} = -\mu_0 j_y$$

pinning of flux quanta

distribution persists in static regime (DC field), but would require a work to be changed

=> dissipation in dynamic regime

(repulsive) interaction of flux quanta

$$\Phi_0 = 2 \times 10^{-15} \text{ Vs}$$

$$B = \frac{\Phi_0}{a^2}$$

- + elasticity of the flux line lattice
- = macroscopic pinning force density F_p [N/m³]

$$a = \sqrt{\frac{\Phi_0}{B}}$$

$$B = 1 \text{ T};$$

$$a = 45 \text{ nm}$$

macroscopic behavior described by the critical state model [Bean 1964]:

local density of electrical current in hard superconductor is either 0 in the places that have not experienced any electric field or it is the critical current density, j_c , elsewhere

in the simplest version (first approximation) j_c =const.

Outline:

1. Hard superconductor in varying magnetic field

2. Magnetization currents: Flux pinning Coupling currents

- 3. Possibilities for reduction of magnetization currents
- 4. Methods to measure magnetization and AC loss

e.g. the critical current measurement

0 A

20 A

100 A

80 A

20 A

0 A

e.g. the critical current measurement

100 A

0 A

e.g. the critical current measurement

Transport of electrical current e.g. the critical current measurement 100 A 0 A 20_A j =0 80 A 20 A

Transport of electrical current e.g. the critical current measurement 100 A 0 A 20_A j =0 80 A 20 A

Transport of electrical current e.g. the critical current measurement 0 A 20 A 100 A j =0 80 A 20 A persistent magnetization current

AC cycle with I_a less than I_c : neutral zone

AC transport in hard superconductor is not dissipation-less (AC loss)

$$Q = \int_{T} IUdt = -\int Id\Phi$$
neutral zone:
$$j = 0, E = 0$$

$$U = -\frac{\partial \Phi}{\partial t}$$

check for hysteresis in I vs. Φ plot

AC transport loss in hard superconductor

hysteresis \rightarrow dissipation \rightarrow AC loss

dissipation because of flux pinning

$$\frac{Q}{V} = \oint B_a dM$$

J/m³]
$$\frac{Q}{V} = \oint B_a dM$$
$$M = \frac{1}{S} \int_{S} -x.j(x, y) dxdy$$

Round wire from hard superconductor in changing magnetic field

 M_s saturation magnetization, B_p penetration field

Round wire from hard superconductor in changing magnetic field estimation of AC loss at $B_a >> B_p$

(infinite) slab in parallel magnetic field – analytical solution

penetration field

$$B_p = \mu_0 j_c \, \frac{w}{2}$$

$$B_p = \mu_0 j_c \frac{w}{2}$$

$$M_s = j_c \frac{w}{4} = \frac{B_p}{2\mu_0}$$

$$\frac{Q}{V} = \frac{1}{\mu_0} \begin{cases} \frac{2}{3} \frac{B_a^3}{B_p} & \text{for } B_a < B_p \\ 2B_p B_a - \frac{4}{3} B_p^2 & \text{for } B_a > B_p \end{cases}$$

 $Q \approx 4B_a M_s$

Slab in parallel magnetic field – analytical solution

Outline:

1. Hard superconductor in varying magnetic field

2. Magnetization currents: Flux pinning
Coupling currents

- 3. Possibilities for reduction of magnetization currents
- 4. Methods to measure magnetization and AC loss

Two parallel superconducting wires in metallic matrix

in the case of a perfect coupling:

Magnetization of two parallel wires

Magnetization of two parallel wires

how to reduce the coupling currents?

Composite wires – twisted filaments

good interfaces
$$\rho_t = \rho_m \frac{1-\lambda}{1+\lambda}$$

bad interfaces

$$\rho_{t} = \rho_{m} \frac{1+\lambda}{1-\lambda}$$

$$\lambda = \frac{S_{SC}}{S_m}$$

$$j_{\perp} = \frac{l_p B}{2\pi \rho_t}$$

Composite wires – twisted filaments coupling currents (partially) screen the applied field

$$B_i = B_{ext} - \tau \dot{B}$$

 τ - time constant of the magnetic flux diffusion

$$\tau = \frac{\mu_0}{2\rho_t} \left(\frac{l_p}{2\pi}\right)^2$$

A.Campbell (1982) Cryogenics 22 3

K. Kwasnitza, S. Clerc (1994) Physica C 233 423

K. Kwasnitza, S. Clerc, R. Flukiger, Y. Huang (1999) Cryogenics 39 829

in AC excitation

$$\frac{Q}{V} = \frac{B_{\text{max}}^2}{\mu_0} \frac{2\pi\omega\tau}{1 + \omega^2\tau^2}$$
round wire

shape factor (~ aspect ratio)

$$\frac{Q}{V} = \frac{B_{\text{max}}^2}{\mu_0} \frac{\chi_0 \pi \omega \tau}{1 + \omega^2 \tau^2}$$

Outline:

- 1. Hard superconductor in varying magnetic field
- 2. Magnetization currents: Flux pinning Coupling currents
- 3. Possibilities for reduction of magnetization currents
- 4. Methods to measure magnetization and AC loss

Persistent currents:

at large fields proportional to $B_p \sim j_c w$

width of superconductor (perpendicular to the applied magnetic field)

= magnetization reduction by either lower j_c or reduced w

lowering of j_c would mean more superconducting material required to transport the same current

thus only plausible way is the reduction of w

effect of the field orientation

Magnetization loss in strip with aspect ratio 1:1000

in the case of flat wire or cable the orientation is not a free parameter

= reduction of the width

~ 6 times lower magnetization

striation of CC tapes

but in operation the filaments are connected at magnet terminations

coupling currents will appear
=> transposition necessary

Coupling currents:

at low frequencies proportional to the time constant of magnetic flux diffusion

$$\tau = \frac{\mu_0}{2\rho_t} \left(\frac{l_p}{2\pi}\right)^2$$
 transposition length effective transverse resistivity

- = filaments (in single tape) or strands (in a cable) should be transposed
- = low loss requires high inter-filament or inter-strand resistivity

but good stability needs the opposite

Outline:

- 1. Hard superconductor in varying magnetic field
- 2. Magnetization currents: Flux pinning Coupling currents
- 3. Possibilities for reduction of magnetization currents
- 4. Methods to measure magnetization and AC loss

Different methods necessary to investigate

- Wire (strand, tape)
- Cable
- Magnet

shape of the excitation field (current) pulse transition unipolar harmonic

relevant information can be achieved in harmonic regime

final testing necessary in actual regime

ideal magnetization loss measurement:

pick-up coil wrapped around the sample induced voltage $u_m(t)$ in one turn:

Induced voltage
$$u_m(t)$$
 in one turn.
$$u_m(t) = -\frac{\mathrm{d}\phi_m(t)}{\mathrm{d}t} = -S\frac{\mathrm{d}\overline{B}(t)}{\mathrm{d}t}$$

$$\overline{B}(t) = \frac{1}{S} \int_S B_{\mathrm{int}}(t) \mathrm{d}S = B_{\mathrm{ext}}(t) + \mu_0 M(t)$$

$$u_m(t) = -S \left[\frac{dB_{\mathrm{ext}}(t)}{dt} + \mu_0 \frac{dM(t)}{dt} \right]$$
Area S

pick-up coil voltage processed by integration either numerical or by an electronic integrator:

$$\mu_0 M(t) = -\frac{1}{S} \int u_m(t) dt - B_{ext}(t)$$

Method 1: double pick-up coil system with an electronic integrator : measuring coil, compensating coil

AC loss in one magnetization cycle [J/m³]:

$$Q = \oint B dM = \int_{0}^{T} B(t) \frac{dM}{dt} dt$$

Harmonic AC excitation – use of complex susceptibilities

$$B_{ext}(t) = B_a \cos \omega t$$

$$\mu_0 M(t) = B_a \sum_{n=1}^{\infty} (\chi_n ' \cos n\omega t + \chi_n " \sin n\omega t)$$

fundamental component n = 1

AC loss per cycle

$$W_q = -\pi \chi'' \frac{B_a^2}{\mu_0}$$

energy of magnetic shielding

$$W_m = \chi' \frac{B_a^2}{2\mu_0}$$

Temperature dependence:

Method 2: Lock-in amplifier

phase sensitive analysis of voltage signal spectrum
 in-phase and out-of-phase signals

$$B_{ext} = B_a \cos \omega t$$

$$U_{nS} = \frac{1}{\pi} \int_{0}^{2\pi} u_{M}(t) \sin n\omega t d\omega t$$

$$U_{nC} = \frac{1}{\pi} \int_{0}^{2\pi} u_{M}(t) \cos n\omega t d\omega t$$

reference signal necessary to set the frequency phase taken from the current energizing the

AC field coil

Method 2: Lock-in amplifier – only at harmonic AC excitation

$$B_{ext} = B_a \cos \omega t$$

$$u_{M}(t) = S\omega B_{a} \left[\sin \omega t + \sum_{n=1}^{\infty} n(\chi_{n}' \sin n\omega t - \chi_{n}'' \cos n\omega t) \right]$$
empty coil
sample magnetization

fundamental susceptibility

$$\chi' = \frac{U_{1S}}{S\omega B_{a}} - 1 = \frac{U_{1S}}{U_{N}} - 1$$

$$\chi'' = \frac{-U_{1C}}{S\omega B_{a}} = \frac{-U_{1C}}{U_{N}}$$

higher harmonic susceptibilities

$$\chi_n' = \frac{U_{nS}}{nU_N}$$

$$\chi_n'' = \frac{U_{nC}}{nU_N}$$

Real magnetization loss measurement:

Pick-up coil

Calibration necessary

$$M = C \int u dt$$
 by means of:

measurement on a sample with known properrties

calibration coil

numerical calculation

AC loss can be determined from the balance of energy flows

Solution 1- detection of power flow to the sample

Solution 2- elimination of parasitic power flows

Loss measurement from the side of AC power supply:

$$P_{sample} = I_m U_B$$

Loss measurement from the side of AC power supply:

Ψ(I) hysteresis loop registration for superconducting magnet (Wilson 1969)

Conclusions:

- 1) Hard superconductors in dynamic regime produce heat because of magnetic flux pinning -> transient loss, AC loss
- 2) Extent of dissipation is proportional to macroscopic magnetic moments of currents induced because of the magnetic field change
- 3) Hysteresis loss (current loop entirely within the superconductor) can be reduced by the reduction of superconductor dimension
- 4) Coupling loss (currents connecting parallel superconductors) reduced by the transposition (twisting) and the control of transverse resistance
- 5) Minimization of loss often in conflict with other requirements
- 6) Basic principles are known, particular cases require clever approach and innovative solutions