Characterization Techniques

M. Eisterer
Atominstitut, TU Wien
Stadionallee 2, 1020 Vienna, Austria
Outline

- Quantities of interest
 - Intrinsic material parameters: T_c, λ, ξ;
 - Extrinsic property: J_c (flux pinning)

- Measurement Techniques
 - Resistivity
 - Magnetization
 - Some others
Intrinsic Properties

- Transition Temperature, T_c
 - BCS: phonon frequency, DOS, coupling
 - Unconventional SC: $T_c \sim 1/\lambda^2$ (empirical)
 - Tuning normally difficult, e.g. pressure, doping
 - Highest in clean materials: scattering is pair breaking for anisotropic energy gap (or multi-gap), only second order effects in s-wave SC
Intrinsic Properties

- Magnetic penetration depth, λ
 - Length scale for field changes in a superconductor
 - Superfluid density: $\sim 1/\lambda^2$
 - Increases with impurity scattering

- Coherence length, ξ
 - Length scale for changes of the superconducting order parameter
 - “Size” of a Cooper pair (clean limit)
 - Decreases with impurity scattering

- Other intrinsic sc parameters can be calculated
 - Condensation energy (E_c), critical fields (H_c, H_{c1}, H_{c2}), depairing current density….
Importance of coherence length

• Upper critical field: \(B_{c2} = \frac{\phi_0}{2\pi \xi^2} \)

• Efficient pinning centers should have a radius of about \(\xi \) (orthogonal to field).

• A small \(\xi \) potentially harms the inter-grain coupling

• A small \(\xi \) increases the condensation energy \(\mu_0 \frac{H_c^2}{2} \):
 \[
 H_c = \frac{\phi_0}{2\pi\sqrt{2}\mu_0\lambda\xi}
 \]

• A small \(\xi \) favors high critical currents.

Depairing current density \(J_d = \frac{\phi_0}{3\sqrt{3}\pi\mu_0\xi\lambda^2} \)

Maximum achievable \(J_c \) by optimized pinning landscape: \(\sim 0.2 J_d \)
Determination of coherence length

• From upper critical field: $B_{c2} = \frac{\phi_0}{2\pi\xi^2}$
 - Resistivity measurements
 - Magnetization measurements
 - Specific heat measurements
• Scanning Tunneling Microscopy (STM): Size of the vortex core
• Small angle neutron scattering
Importance of magnetic penetration depth

- Lower critical field: \(B_{c1} = \frac{\phi_0}{2\pi \lambda^2} \ln(\kappa) \)

- A small \(\lambda \) is a manifestation of a large superfluid density: \(n_s = \frac{m_e}{\mu_0 \lambda^2 e^2} \)

- Condensation energy \(\mu_0 \frac{H_c^2}{2} \): \(H_c = \frac{\phi_0}{2\pi \sqrt{2} \mu_0 \lambda \xi} \)

- Depairing current density \(J_d = \frac{\phi_0}{3\sqrt{3} \mu_0 \xi \lambda^2} \) (impacts on \(J_c \))

- Surface impedance: \(Z_S = R_S + iX_S, X_S = \mu_0 \omega \lambda \)

- Unconventional SC (cuprates, IBS): \(T_c \sim 1/\lambda^2 \)
Determination of magnetic penetration depth

- From Meissner susceptibility
- From lower critical field: \(B_{c1} = \frac{\phi_0}{2\pi\lambda^2} \ln(\kappa) \)
- Reversible magnetization
 - \(B_c \) from area below rev. magnetization curve: \(\frac{B_c^2}{2\mu_0} \)
 - Fit of (available parts of) M(H) to theory.
- Magnetic Force Microscopy (MFM): Field of flux-lines, surface currents
- Small-angle neutron scattering
- Muon spin rotation (\(\mu \)SR)
- Surface impedance, e.g., cavity perturbation method: change of Q of superconducting cavity
Ginzburg-Landau Theory

Two important parameters:

1) Coherence length ξ: variation length of superconducting order parameter.
2) Magnetic penetration depth λ: variation length of magnetic field.

Ginzburg-Landau parameter $\kappa := \frac{\lambda}{\xi}$

- $\kappa < \frac{1}{\sqrt{2}}$: type-I superconductors
- $\kappa > \frac{1}{\sqrt{2}}$: type-II superconductors

GL-theory is in principle restricted to temperatures close to T_c. Magnetic behavior does not change qualitatively at low temperatures.
Relation to BCS and London Theory

- BCS coherence length $\xi_0 = \frac{\hbar v_F}{\pi \Delta(0)}$ ("size of a cooper pair")

$$\xi(T) = 0.74 \frac{\xi_0}{\sqrt{1 - t}} \quad \text{(clean limit: } \xi \ll l)$$

$$\xi(T) = 0.885 \frac{\sqrt{\xi_0} l}{\sqrt{1 - t}} \quad \text{(dirty limit: } \xi \gg l \ldots \text{ mean free path)}$$

- London penetration depth $\lambda_L(0) = \sqrt{\frac{m_e}{\mu_0 n_s e^2}} = \sqrt{\frac{3}{2\mu_0 e^2 n_F^2 N_0}}$

$$\lambda(T) = \frac{1}{\sqrt{2}} \frac{\lambda_L(0)}{\sqrt{1 - t}} \quad \text{(clean limit)}$$

$$\lambda(T) = \lambda_L(T) \frac{\xi_0}{1.33 l} \quad \text{(dirty limit)}$$
Extrinsic property: Critical current density J_c

- Intrinsic: depairing current density $J_d = \frac{\phi_0}{3\sqrt{3}\pi\mu_0\xi\lambda^2}$

k_c is given by flux pinning: $J_c = \eta J_d$

- Extrinsic: Pinning efficiency $0 \leq \eta \lesssim 0.2$

- Pinning centers: crystal defects, grain boundaries

- Pinning engineering: (artificial pinning) nano-inclusions
Measurements of Transition Temperature

The superconductor should not be disturbed too much by the measurement: applied fields and currents etc. should be small. Most frequently used techniques:

- Resistive (I_c)
- Magnetic (H_{c1}, H_c, H_{c2})
- Specific heat (bulk probe!)

Possible issues: surface effects, material inhomogeneities, thermal gradients
Jump in the specific heat at T_c

C. Senatore et al., 2007
Resistive transitions

Four point measurements: separate current and voltage contacts:

Current reversal to get rid of non-dissipative components (thermal voltage, chemical potentials)

Arbitrary evaluation criteria: 90 %, 50%, 10% (irreversibility line), tangent criteria, “zero” resistivity…
The real onset may be masked by a highly conductive sheath. Representative for the bulk?
MAGNETIZATION
MEISSNER STATE
Perfect Diamagnetism

Type I superconductor
Type II superconductor

Infinite sample: $B = \mu_0(H + M) = 0 \Rightarrow H = -M$
AC Susceptibility (SQUID)

\[\chi = \frac{M}{H_{eff}} \]

Applied ac-field: \(H_0 \sin(\omega t) \)
Magnetization in Meissner state:
\[-\frac{H_0}{1 - D} \sin(\omega t) \]

In-phase component of ac susceptibility (fourrier component of \(\sin(\omega t) \)):
\[\chi' = -1 \]

Out-of-phase component (fourrier component of \(\cos(\omega t) \)):
\[\chi'' = 0 \]

Close to \(T_c \): \(H_{c1} < H_0 \rightarrow \) Mixed state \rightarrow dissipation: \(\chi'' > 0 \) (loss peak)
DC susceptibility:
\[\chi = \chi' \] zero field cooled (zfc), \(H_0 << H_{c1} \)
\[\chi < \chi' \] field cooled (fc) (flux pinning)

Advantage of ac technique: Better resolution at the same \(H_0 \).
Perfect Diamagnetism

Field enhancement caused by return-flux

\textit{normaleitend} \hspace{3cm} \textit{supraleitend}
Perfect Diamagnetism

Effectively applied magnetic field below \((1-D)H_c\):

\[H_{\text{eff}} = H_a + DM \]

\[M = -H_{\text{eff}} \]

\[H_{\text{eff}} = \frac{H_a}{(1 - D)} \]

(along the equator of spheroids)

\[m = -DH_a V, \] Meissner slope \(\frac{dm}{dH_a} \) is universally \(-DV\).
Demagnetization factors

![Graph](image)

Numerical calculation for cuboids \(a \times b \times h, a > b\)

\[D = 1 - \frac{\pi h}{2d} \]

Asymptotic behavior for thin disks (\(d \times h\)):

\[D = 1 - \frac{\pi h}{2d} \]

Empirical:

\[\frac{a}{h} \rightarrow \frac{d}{h} \left(\frac{4d}{P} \right) \]

\(d\): larger lateral dimension, \(P\): perimeter

Field at the edges diverges with \(h \rightarrow 0\).

\[H_{\text{eff}} = \frac{H_a}{(1 - D)} \]
Thin plate of lead (vector magnetometer)

\[
M_{||sf} = -\frac{H_0 \cos(\theta)}{1 - D_{||}}
\]

\[
M_{||H_0} = M_{||sf} \cos(\theta) + M_{\perp sf} \sin(\theta)
\]

\[
M_{||H_0} = -\frac{H_0 \cos^2(\theta)}{1 - D_{||}} - \frac{H_0 \sin^2(\theta)}{1 - D_{\perp}}
\]

\[
M_{\perp sf} = -\frac{H_0 \sin(\theta)}{1 - D_{\perp}}
\]

\[
M_{\perp H_0} = M_{||sf} \sin(\theta) + M_{\perp sf} \cos(\theta)
\]

\[
M_{\perp H_0} = -H_0 \cos(\theta) \sin(\theta) \left(\frac{1}{1 - D_{||}} + \frac{1}{1 - D_{\perp}} \right)
\]
Shielding Fraction

- Experimental assessment of Meissner slope
- Calculation of shielded volume: \(V_{\text{shielding}} = - \frac{1}{D} \frac{dm}{dH_a} \)
- Shielding fraction: \(\eta = \frac{V_{\text{shielding}}}{V_{\text{sample}}} \)
 - \(\eta < 1 \): sample is not entirely superconducting: cracks, secondary phases, etc.
 - \(\eta = 1 \): sample may be OK.
- Shielding fraction may differ from superconducting volume fraction! E.g. hollow sphere, powder
- Problematic:
 - Thin samples: \(D \) is very sensitive to sample thickness
 - Sample dimensions comparable to or smaller than magnetic penetration depth \(\lambda \).
Perfect Diamagnetism?

- $B=0$ only in the bulk of the superconductor.
- B penetrates the superconductor in a surface layer with thickness of the order of λ.
- If λ is not much smaller than the smallest sample dimension, η is reduced.

Meissner susceptibility can be used to determine the magnetic penetration depth.
Meissner susceptibility

MgB$_2$ powder

- Low shielding fraction
- Temperature dependence of susceptibility down to low temperatures
- Inter-grain coupling?

MgB$_2$ bulk (cube)

- Shielding fraction close to one below T_c
- Susceptibility hardly depends on temperature below 30 K.
- Material inhomogeneities or inter-grain (de-)coupling manifest near T_c.
Meissner susceptibility

Sintered Sm-1111 bulks

- Grains decouple with field in sample LIC
Thin plate parallel to field

\[\chi = \frac{M}{H_0} \]

\[M = M_0 \left(1 - \frac{2\lambda}{h} \tanh \left(\frac{h}{2\lambda} \right) \right), \quad M_0 = -DH_0 \]

Empirical two-fluid model: \(\lambda(T) = \frac{\lambda(0)}{\sqrt{1-t^4}}, \quad t = \frac{T}{T_c} \)
Determination of λ from Meissner susceptibility: experimental issues

- $\chi \approx -1$ at low temperature (unless sample is very thin): high experimental resolution is needed.
- D and V (superconducting sample volume) have to be known very accurately.
- Fit of D and $\lambda(0)$ to $\chi(T)$ for known temperature dependence of λ:
 - $\lambda(T)$ is influenced by strong coupling, symmetry of pairing, multi-bands, impurity scattering….
 - Inhomogeneities influence $\chi(T)$ close to T_c.
- Powder samples: geometry of grains, inter-grain coupling.
- Very thin samples: Misalignment between sample and applied field.

$\Delta \lambda(T) := \lambda(T) - \lambda(0)$ can be determined more easily/reliably.
Two-coil mutual inductance technique

\[M \approx \pi \mu_0 \frac{r_{dr} r_{pu}}{h} \int_0^\infty dx \]

\[\times \frac{xe^{-x}}{x \cosh(d \sqrt{i \mu_0 \omega \sigma} + \frac{i \mu_0 \omega \sigma h}{2}} \frac{\sinh(d \sqrt{i \mu_0 \omega \sigma})}{\sqrt{i \mu_0 \omega \sigma}} \]

\[\times J_1 \left(x \frac{r_{dr}}{h} \right) J_1 \left(x \frac{r_{pu}}{h} \right) . \]
Self-Oscillating Tunnel-Diode Resonator (TDR)

- Resonance frequency \(f = \frac{1}{2\pi\sqrt{LC}} \) (e.g. 14 MHz)
- Superconductor in coil changes \(L \)
- Change of resonance frequency

Infinite slab (volume \(V_s \), width \(2w \)): \[
\frac{\Delta f}{f} = \frac{V_s}{2V_c} \left(1 - \frac{\lambda}{w} \tanh\left(\frac{w}{\lambda} \right) \right)
\]

(\(V_c \): Volume of inductor)

e.g. R. Prozorov and V. G. Kogan, RPP 74 (2011) 124505
Summary: Meissner susceptibility

- $M = -H_{\text{eff}}$ only if $\lambda \ll R$. (Hence, never near T_c!)
 - $\lambda = \lambda(T) \implies \chi \rightarrow \chi(T)$
 - Possibility for the determination of λ.
- The demagnetization effect increases the effectively applied field (quite significantly in thin samples): $H_{\text{eff}} > H_0$
- $|\chi|$ is reduced by granularity
- $\chi(T)$ is changed by inhomogeneities (in particular near T_c).
MAGNETIZATION
MIXED STATE
Vortices in type-II superconductors

Vortices: normal conducting core (radius $\sim \xi$), circular currents produce magnetic flux quantum ϕ_0.
Ginzburg-Landau Theory

\[
H_c = \frac{\phi_0}{2\pi\sqrt{2\mu_0\lambda\xi}}
\]

\[
H_{c1} = \frac{\phi_0}{4\pi\mu_0\lambda^2} \ln \kappa
\]

\[
H_{c2} = \frac{\phi_0}{2\pi\mu_0\xi^2} = \sqrt{2\kappa}H_c
\]

Many important parameters can be obtained from the reversible magnetization curve. Unfortunately, flux pinning normally inhibits its measurement.
Magnetization measurements of H_{c2}

1) $M(T)$ at fixed H_0

$T_c(H) \Rightarrow H_{c2}(T)$

2) $M(H)$ at fixed T_0

$H_{c2}(15 \text{ K})$

“$T_c(1 \text{ T})$”
Magnetization measurements of H_{c2}

Possible issues:

1) Magnetic background (normal state properties, sample holder, vibrations in VSM)
2) Surface contamination ($\rho_n \uparrow \rightarrow H_{c2} \uparrow$)
3) Surface superconductivity $H_{c3} = 1.69(?) H_{c2}$ (resistive measurements)
4) Fluctuations, Ginzburg number

$$G_i := 1 - \frac{T_r}{T_c} = \frac{1}{2} \left(\frac{\mu_0 k_B}{4 \pi} \frac{\gamma T_c}{B_c^2(0) \xi^3(0)} \right)^2 = \frac{1}{2} \left(\frac{2 \pi \mu_0 k_B}{\phi_0^2} \frac{\gamma \lambda^2(0) T_c}{\xi(0)} \right)^2$$
Estimation of large H_{c2}

Large H_{c2}: superconductors with large κ. \rightarrow London theory is a good approximation for $H<0.5H_{c2}$:
\[\frac{\partial M}{\partial \ln H} = \frac{\phi_0}{8\pi\mu_0\lambda^2} \]

- Plot m vs. $\ln(H)$.
- Extrapolate to $m=0$ to obtain H_{c2} (underestimation)
- Alternative: Fit to alternative models for $M(H)$
Resistive transitions

Arbitrary evaluation criteria: 90 %, 50%, 10% (irreversibility line, B_{irr})…

$T_c(B) \Rightarrow B_{c2}(T)$ (also specific heat)

Cuprates: $B_{c2} >> B_{\text{irr}}$
Magnetic determination of thermodynamic critical field

Usually impeded by pinning!

If pinning is weak, the reversible magnetic moment can be obtained by

\[m_{\text{rev}} = \frac{1}{2} (m_+ + m_-) \]

\(m_+ \) (\(m_- \)): magnetic moment on increasing (decreasing) field branch
Summary: Mixed State

- Two important parameters: λ, ζ.
- Determination of ζ from H_{c2}.
- λ is a very important parameter but hard to assess.
- Flux pinning normally impedes the determination of the thermodynamic (or reversible) magnetization curve.
FLUX PINNING
CRITICAL CURRENTS
Critical State Model

Flux pinning balances the Lorentz force:

\[F_L = J_c0 \times B = -F_p^{\text{max}} \]

Current (or pinning) causes field gradients:

\[\nabla \times B = \mu_0 J \]

Current results in a magnetic moment:

\[m = \frac{1}{2} \int r \times J d^3r \]

Bean Model: Current density in a superconductor is either 0 or \(J_c \). The direction of the current depends on geometry and history. If \(I < I_c \), \(J_c \) does not flow in the entire sample volume.
Thermally activated depinning

\[\nu = \nu_0 e^{-\frac{U_0}{k_B T}} \]

depinning rate

\[U(J) = U_0 \left(1 \pm \frac{J}{J_{c0}} \right) \]

activation barrier

Net forward jump rate:

\[e^{-\frac{U_0 (1-J/J_{c0})}{k_B T}} - e^{-\frac{U_0 (1+J/J_{c0})}{k_B T}} = 2e^{-\frac{U_0}{k_B T}} \sinh \frac{JU_0}{J_{c0} k_B T} \]

\[\rightarrow E(J) = 2\rho_c J_{c0} e^{-\frac{U_0}{k_B T}} \sinh \frac{JU_0}{J_{c0} k_B T} \]

1) \(E(J) = \rho_c J_{c0} e^{-\frac{U_0}{k_B T}} \left(e^{\frac{U_0}{k_B T} J_{c0}} - 1 \right), \quad J \ll J_{c0} \)

flux creep

2) \(E(J) = 2\rho_c \frac{U_0}{k_B T} e^{-\frac{U_0}{k_B T} J} =: \rho_{\text{T AFF}} J, \quad J \ll J_{c0} \)

thermally assisted flux flow

\[\rightarrow J_{c} := J(E_{\text{crit}}) < J_{c0} \]
Thermally activated depinning

\[J_c := J(E_{\text{crit}}) < J_{c0} \]

The electric field criterion, \(E_{\text{crit}} \), is chosen arbitrarily or imposed by the experiment.
Thermally activated depinning

\[E_{\text{crit}}(E_c) \]

\[J_{c0}(B,T) \rightarrow J(E,B,T) \]

\[J_c^{\text{exp}} = J(E_c) < J_{c0} \]
Typical electric field criteria

<table>
<thead>
<tr>
<th>Experimental technique</th>
<th>E_c (µV/cm)</th>
<th>Depending on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistive transport</td>
<td>0.1-10</td>
<td>Your choice, sample size</td>
</tr>
<tr>
<td>SQUID</td>
<td>$10^{-8}-10^{-3}$</td>
<td>Sample size, J_c, S (material, field, temperature)</td>
</tr>
<tr>
<td>VSM (sweep mode)</td>
<td>$10^{-4}-0.1$</td>
<td>Sample size, field sweep rate</td>
</tr>
<tr>
<td>VSM (step mode)</td>
<td>$10^{-7}-10^{-2}$</td>
<td>Sample size, material, field, temperature</td>
</tr>
<tr>
<td>AC-susceptibility</td>
<td>$<10^{-5} - 1$</td>
<td>Sample size, amplitude and frequency, J_c</td>
</tr>
<tr>
<td>Scanning Hall probe</td>
<td>$10^{-9}-10^{-3}$</td>
<td>Sample size, material, field, temperature</td>
</tr>
</tbody>
</table>

Cuboid in a VSM:

\[
E = \frac{U}{2(a + b)} = -\frac{1}{2(a + b)} \frac{d\phi}{dt} = -\frac{ab}{2(a + b)} \frac{dB}{dt}
\]

Field ramp rate

SQUID and SHP measurements: Electric field given by the relaxation of the magnetization.
SQUID vs. Resistive

Huge difference at high magnetic fields!

Transport (1µV/cm) vs. SQUID

$J_c (\text{A/m}^2)$

$\mu_0H(T)$

77 K
Assessment of $J(E)$ in a wide range

$E = E_c \left(\frac{J}{J_c} \right)^n$

Combination of different techniques
CRITICAL CURRENT TRANSPORT MEASUREMENTS
I-V curves

“Textbook”
I-V curves

Empirical: \(E = E_c \left(\frac{J}{J_c} \right)^n \)

\(n \)-value (large \(n \) is desired)
J_c-evaluation

$J_c = J_c^{\exp} = J(E_c)$

- Common electric field criteria: $E_c=0.1$ or 1 µV/cm
 - Simple intersection with I-V curve
- Fit of I-V curve by $E = E_c \left(\frac{J}{J_c} \right)^n \rightarrow J_c, n$
- Slope of I-V curve in double logarithmic representation: n
Experimental Issues

- Heating/thermal voltages
- Strain: thermal expansion, Lorentz force
- Thermal instabilities: quench
- Transfer length (linear component) (minimum distance between current and voltage taps)

![Graph showing V/V_c vs. I/I_c^exp](image)
CRITICAL CURRENT
MAGNETIC MEASUREMENTS
Bean Model

\[m = \frac{1}{2} \int r \times J \, d^3r = J_c \frac{1}{2} \int r \times e \, d^3r \]
Bean Model: Formulae

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Relation between J_c and the irreversible component of m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder of radius R and height h, axis parallel to H.</td>
<td>$J_c = \frac{3m_{irr}}{\pi R^3 h}$</td>
</tr>
<tr>
<td>Cylinder of radius R and height h, axis normal to H, $h > 2R$</td>
<td>$J_c = \frac{3m_{irr}}{4R^3 h(1 - 3\pi R/16h)}$</td>
</tr>
<tr>
<td>Cuboid with dimensions $a \times b \times c$, H parallel to c, $a \geq b$.</td>
<td>$J_c = \frac{4m_{irr}}{ab^2c(1 - b/3a)}$</td>
</tr>
<tr>
<td>Cuboid with dimensions $a \times b \times c$, H parallel to c, $b \geq a$.</td>
<td>$J_c = \frac{4m_{irr}}{a^2bc(1 - a/3b)}$</td>
</tr>
<tr>
<td>Sphere of radius R.</td>
<td>$J_c = \frac{8m_{irr}}{\pi^2 R^4}$</td>
</tr>
</tbody>
</table>

For the fully penetrated state (all current loops have the same orientation)
Different Symmetry of Reversible and Irreversible Magnetization

\[m = m_{\text{irr}} + m_{\text{rev}} \]

\[m_{\text{irr}}(H) = -m_{\text{irr}}(-H) \]

\[m_{\text{irr}}(H) = m_{\text{irr}}(-H) \]

\[m_{\text{irr}}(H) = \frac{|m_-(H) - m_+(H)|}{2} \]

\[m_{\text{irr}}(H) = \frac{|m_-(H) + m_+(-H)|}{2} \]

\[m_{\text{rev}}(H) = -m_{\text{rev}}(-H) \]

\[m_{\text{rev}}(H) = \frac{m_-(H) + m_+(H)}{2} \]
Self field correction

\[J_c \neq J_c(H) \]
\[J_c = J_c(|B|) \]

\[B = \mu_0 (H_0 + M_{rev}) + B_{self} \]

\[\nabla \times B = \mu_0 J \]

Infinite cylinder: \(\frac{\partial B_z}{\partial r} = -\mu_0 J_\phi \) \(\frac{\partial B_z}{\partial r} \) linear field profile, slope proportional to \(J_c \).

Calculation of self-field is normally based on the Biot-Savart law:

\[B_{self}(r) = \int \frac{J \times r'}{|r - r'|^3} d^3 r' = J_c \int \frac{e_J \times r'}{|r - r'|^3} d^3 r' \]

Influence of aspect ratio on self-field

\[H^* = H(r = 0) = \frac{J_c h}{2} \ln \frac{\sqrt{h^2 + d^2 + d}}{h} \]

Rough estimate:

\[H^* = J_c \frac{a}{2} \]

\(a \): smallest sample dimension
Self-field correction

Shift of measured points along x-axis:

\[m(H) \rightarrow m(B) \]

\[
B_{av} = \frac{1}{N} \int_V |\mu_0(H_0 + M_{rev}) + B_{self}(r)| r^2 d^3r
\]

\[J_c = J_c(|B|)! \]

Iterative calculation:

1) Calculate \(J_c(H) \) and \(M_{rev}(H) \).
2) Calculate \(B_{av} \) from \(B_{self}(H,J_c(H)) \) and \(M_{rev}(H) \).
3) Calculate \(J_c(B_{av}), M_{rev}(B_{av}) \) from \(m_+(B_{av}) \) and \(m_-(B_{av}) \).
4) Re-iterate \(B_{av} \) from \(B_{self}(B_{av},J_c(B_{av})) \), and \(M_{rev}(B_{av}) \).
5) Continue with 3) until \(B_{av} \) remains constant for all \(m \).
6) \(J_c(B) = J_c(B_{av}) \).

e.g. M. Zehetmayer, Phys. Rev. B 80 (2009) 104512
Self-field correction

\[J_c \text{ not assessable for small fields } (B<\sim B') \text{ with transport nor magnetization measurements.} \]
Sloppy Treatment in Literature

- \(J_c(H) \)!
- Flux jumps
- \(H^* \) not taken into account properly

Diagram:
- Y-axis: \(J_c \) (A cm\(^{-2}\))
- X-axis: \(B \) (T)
- Legends for samples with different concentrations and magnetic fields.
Surface barriers/pinning

Strongly asymmetric magnetization loop

Decomposition in reversible and irreversible moment

- Weak bulk pinning or decoupled grains (powder)
- Distinction of surface effects from significant contribution of M_{rev} often difficult:
 - Self field correction (including demagnetization).
 - Estimation of $M_{\text{rev}} (H_{c1})$ from λ and ζ (if known).
Granularity

So far: perfectly homogeneous sample. Limit of sample consisting of decoupled (cubic) grains: Sum of contribution of all grains.

$$J^\text{intra}_c = N \frac{6m^\text{intra}_\text{irr}}{a_g^4} = \frac{6m^\text{irr}}{a^3 a_g}$$

- a_g: grain size
- $N = a^3 / a_g^3$: number of grains

Weakly coupled grains: $m^\text{irr} = m^\text{intra}_\text{irr} + m^\text{inter}_\text{irr}$

$$\frac{m^\text{inter}_\text{irr}}{m^\text{intra}_\text{irr}} = a \frac{J^\text{inter}_c}{a_g J^\text{intra}_c}$$ (cubic sample and grains)

If this ratio is either small or large, J^intra_c or J^inter_c can be derived approximately.
Granularity (Scanning Hall Probe Microscopiy, SHPM)

Calculation of local currents by numerical inversion of the Biot-Savart law.
Granularity (SHPM)
Granularity (SHPM)

Average j_c^{intra} and j_c^{inter} can be derived.

J. Hecher et al.,
SUST 29 (2016) 025004.
Field where the magnetization curve becomes reversible $\leftrightarrow J_c \to 0$.

Reality: $J(B, E_{\text{crit}}) < J_{\text{crit}}$
MAGNETOMETERS
Superconducting Quantum Interference Device (SQUID)

- The sample is moved through a pick-up coil system.
- The net flux is coupled to a SQUID sensor.
- Fit of the signal ($U(z)$) to the theoretical curve.
- Typical resolution limit:
 - 5×10^{-11} Am2 in zero field
 - 5×10^{-10} Am2 at a few Tesla
 - Even better in the VSM mode

Second order gradiometer
Vibrating Sample Magnetometer (VSM)

- First order gradiometer or Mallison coil set.
- Sample vibrates and induces a voltage:

\[
U \propto \frac{d\phi}{dt} = \frac{d}{dt} \int B_z(x, y, z - z_0) dx dy = \frac{d\phi(z - z_0)}{dt}
\]

\[
= - \frac{d\phi(z - z_0)}{dz_0} \frac{dz_0}{dt} = A\omega \frac{d\phi(z)}{dz}
\]

- Typical resolution: \(10^{-9}\) to \(10^{-8}\) Am\(^2\)
- Faster than a SQUID
- Field sweep mode