

Leadscrew taskforce report

<u>L. Gentini</u>

Carlo Zanoni, Francois-Xavier Nuiry, Inigo Lamas, Jerome Lendaro, Manuele Narduzzi, Maxime Bergeret, Mickael Crouvizier, Patrice Francon, Pierre Gander.

ENGINEERING DEPARTMENT

Outline

MME Mechanical & Materials Engineering

- First test campaign summary **Dry screws**: Ceramic / SS ø-20µm ball screw
 - Second test campaign **Dry screws**: Ceramic / SS ø-40μm ; Full Ceramic ball screw
- Lubricated screw: Analysis post cycling

KSK screws

UMBRA screws

- Dry screws: Full Stainless steel ball screw
- SKF
 - Dry screw: Stainless Steel with Dicronite coating roller screw

Next steps

05.09.2017 Luca Gentini MME

Dry UMBRA (old tests)

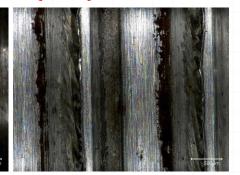
Remind of first campaign of cycling tests

Test n°	Screw N°	Load [kN]	Last Cycle	Note
1	0006	1.4	1049	Motor lost step
	0002	2	1049	Noise
2	0004	1.4	1072	a lot of noise
	0005	2	1072	noise
3	0001	1.4	1072	motor lost step
	0010	2	1072	noise

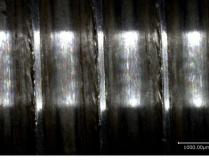
- The screws of the first test bench have been dismantled and analysed at CERN (EDMS: 1761802)
- $\circ~$ The screws of the third test bench have been sent to UMBRA for analysing.

FAILED UMBRA SCREW CHARATERIZATION

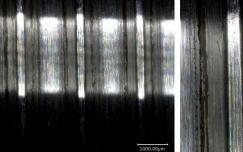
original magnification ×100


Upper screw (0002): Ø6.3 spring load- Jaw load = 1.4 kN max

Bottom screw (0006): Ø6.3 spring load + Jaw load = 2 kN max



Screw 0006 (2 kN)



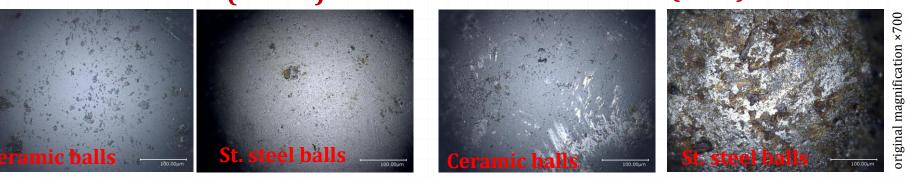
original magnification ×100

original magnification ×50

original magnification ×50

LOM: Thread of screw n°0006 appears to be clearly damaged whereas to thread of screw n°0002 which appears to be used but no really damaged.

From Mickael Denis Crouvizier EDMS: 1761802


FAILED UMBRA SCREW CHARATERIZATION

MME Mechanical

& Materials Engineering

Screw 0002 (1.4 kN)

Screw 0006 (2 kN)

ENGINEE DEPARTI

Ceramic Balls seam do not compromise the functionality of the screws, even if on the 0006 screws they are a bit damaged. St. steel balls are very damaged on the bottom screw (much loaded)

original magnification x12

The **ball guides** (17-4 PH) removed from the nut of the screw n°0006 revealed abnormal wear and are clearly deformed.

From Mickael Denis Crouvizier EDMS: 1761802

FROM UMBRA CUSCINETTI SPA

The results of the **analysis done on the in UMRA's laboratory** on the failed screws of the third test bench **are very similar to CERN's results**. The screws had same problems on the St. steel balls and the guiding pieces.

People from UMBRA are very surprised by these results. **They do not know a real cause**, but they suppose the problem came by the friction between St. Steel balls and guiding pieces.

They proposed 3 others kinds of screw to test:

- **1**. Full ceramic balls with same size
- 2. Half ceramic balls and half St. steel balls (ϕ -40 μ m)
- **3**. Half ceramic balls and half St. steel balls (*ø*-80μm)

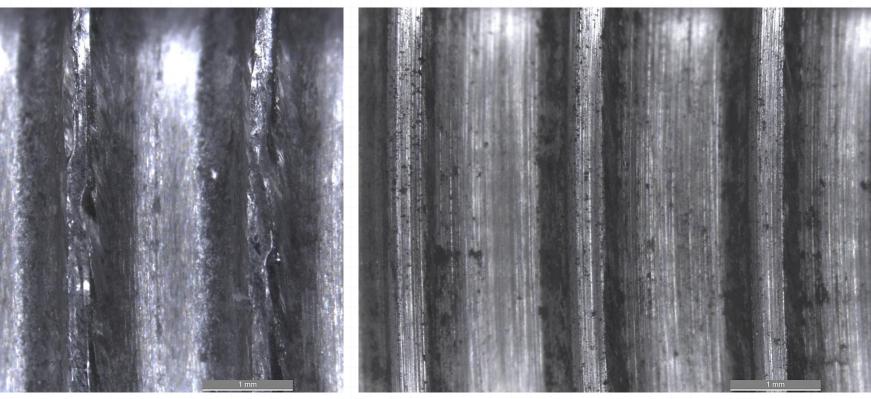
LHC Collimation Project

ENGINEERING DEPARTMENT

MME Mechanical & Materials Engineering

- Full ceramic balls

Test n°	Screw N°	Load [kN]	Last Cycle	Note
1	0028 C/C	1.4	460	Noise
	0035 C/C	2	460	Motor lost step
3	0032 C/SS - ø40µm	1.4	2740	Motor lost step
	0033 C/SS - ø40μm	2	2740	Noise



MME Mechanical & Materials Engineering

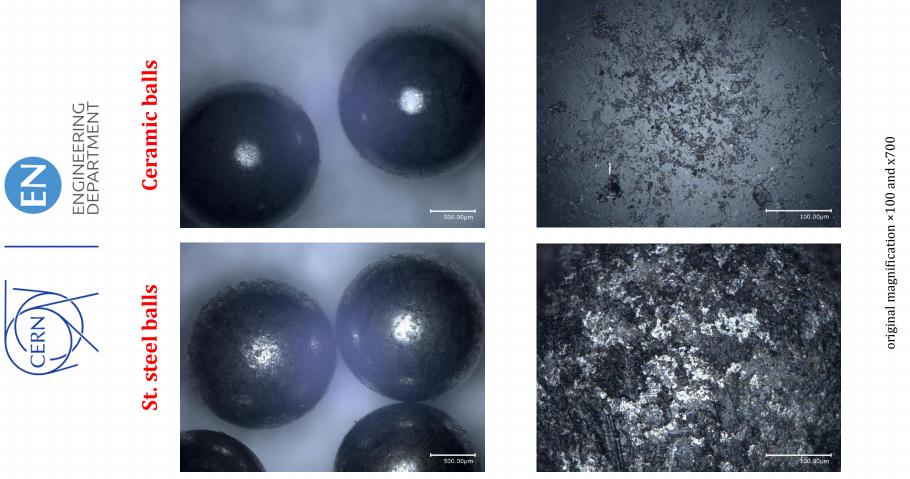
Screw 0032 : C/ SS Ø-40µm (1.4 kN)

original magnification ×16

original magnification ×16

Screw 0035 : C/C (2 kN)

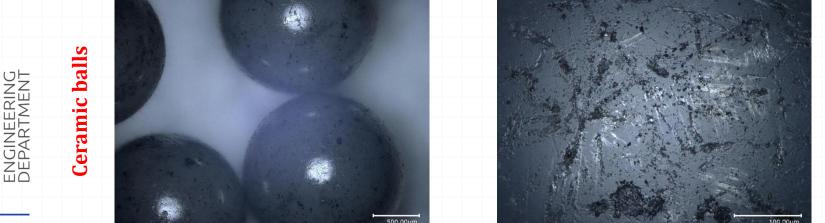
LOM: Thread of screw n°0032 appears to be clearly damaged whereas to thread of screw n°0035 which appears in good conditions.


From Mickael Denis Crouvizier EDMS: 1762331

05.09.2017 Luca Gentini MME

MME Mechanical & Materials Engineering

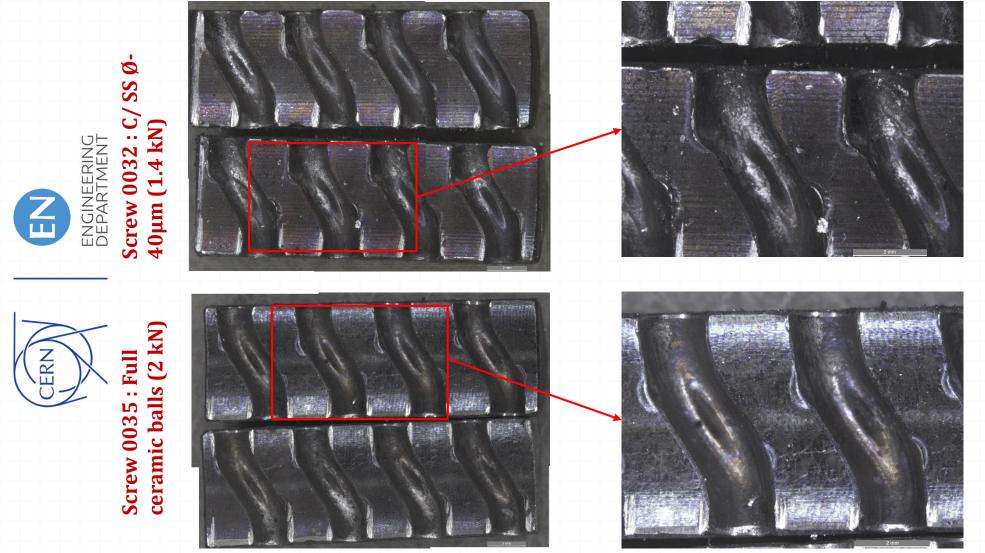
Screw 0032 : Ceramic balls/ St. Steel Ø-40µm (1.4 kN)


Ceramic Balls seam scratched but they do not compromise the functionality. St. steel balls are very damaged.

From Mickael Denis Crouvizier EDMS: 1762331

Screw 0035 : Full ceramic balls (2 kN)

original magnification ×100 and x700



Ceramic Balls seam scratched but they do not compromise the functionality.

From Mickael Denis Crouvizier EDMS: 1762331

From Mickael Denis Crouvizier EDMS: 1762331

SECOND CAMPAIGN OF UMBRA SCREWS

AE Mechanical & Materials Engineering

CONCLUSION:

- Full ceramic balls:
 - Thread in good condition
 - Balls scratched but not damaged
 - Ball guiding less damaged (more load, less cycles)
- $\circ~$ Ceramic / Stainless steel ø-40 μm balls:
 - Thread clearly damaged
 - Balls clearly damaged
 - Ball guiding clearly damaged

CYCLING TEST ON LUBRICATE UMBRA SCREW

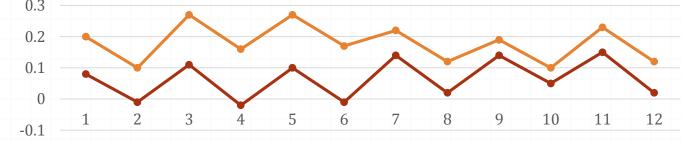
Туре	Supplie r	Ident. N°	recepti on	Lubricant	Visual test	Dimensional test	up / down	Starting test	Cycles end	Status after test	Note	Cycle s 1	Status after test3	Cycle s 2	Status after test33
	Ē								test						
LHCTCS 0082	UMBRA	0015	01/10/2 016	yes	100%	EDMS: 1753580	Up	13/03/2 017	10000	Visual test: very good movement	test topped screw at CERN				
LHCTCS 0082	UMBRA	0016	01/10/2 016	yes	100%	EDMS: 1753580	Down	13/03/2 017	10000	Visual test: block at some points Elliptical lubricant distribution EDMS: 1797892	Test stopped screw sent back to umbra (26-03- 2017)				
LHCTCS 0082	UMBRA	0017	01/10/2 016	yes	100%	EDMS: 1753580	up	13/03/2 017	10000	Visual test: very good movement		2000 0	(19-04-2017) Visual test: very good movement starting Elliptical lubricant distribution EDMS: 1797893	3000 0	(15-05-2017) Visual test: very good movement starting Elliptical lubricant distribution EDMS: 1797893
LHCTCS 0082	UMBRA	0018	01/10/2 016	yes	100%	EDMS: 1753580	Down	13/03/2 017	10000	Visual test: good movement starting Elliptical lubricant distribution EDMS: 1797892		2000 0	(19-04-2017) Visual test: very good movement starting Elliptical lubricant distribution	3000 0	(15-05-2017) Visual test: very good movement starting Elliptical lubricant distribution
-													EDMS: 1797893		EDMS: 1797893

Both screws have been sent back to UMBRA. They didn't disassemble the screws, but they suppose that screws work very well. Could a internal adjustment happen?

05.09.2017 Luca Gentini MME

HiColDem

13



ENGINEERING DEPARTMENT

TORQUE TEST ANALYSIS ON LUBRICATE UMBRA SCREWS

		()	5	5k		10k		5k	20	Ok	25k	
		IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
in to out	Screw 0017 UP (1.4 kN)	0.08	-0.01	0.11	-0.02	0.1	-0.01	0.14	0.02	0.14	0.05	0.15	0.02
in to out	Screw 0018 DOWN (2 kN)	0.2	0.1	0.27	0.16	0.27	0.17	0.22	0.12	0.19	0.1	0.23	0.12
	0.2												

		OUT	IN	OUT	IN								
	Screw 0017 UP (1.4 kN)	0.3	0.68	0.19	0.55	0.22	0.6	0.28	0.68	0.3	0.68	0.3	0.64
out to i	Screw 0018 DOWN (2 kN)	0.68	0.93	0.55	0.85	0.55	0.85	0.58	0.9	0.62	0.96	0.6	0.9
	1.5	0.00	0.55	0.55	0.05	0.55	0.05	0.50	0.5	0.02	0.50	0.0	0.

	Difference between IN and	lout ¹ 2	3 4	5 6	7 8	9 10	11 12
	(Spring compression)		→ UP :	screw — DO	WN screw		
in to out	Screw 0017 UP	0.09	0.13	0.11	0.12	0.09	0.13
in to out	Screw 0018 DOWN	0.1	0.11	0.1	0.1	0.09	0.11
out to in	Screw 0017 UP	0.38	0.36	0.38	0.4	0.38	0.34
out to in	Screw 0018 DOWN	0.25	0.3	0.3	0.32	0.34	0.3

Difference between UP	theoretical 0.37
and DOWN (iaw load)	Nm

jaw load)												
	IN	OUT										
in to out	-0.12	-0.11	-0.16	-0.18	-0.17	-0.18	-0.08	-0.1	-0.05	-0.05	-0.08	-0.1
out to in	-0.38	-0.25	-0.36	-0.3	-0.33	-0.25	-0.3	-0.22	-0.32	-0.28	-0.3	-0.26

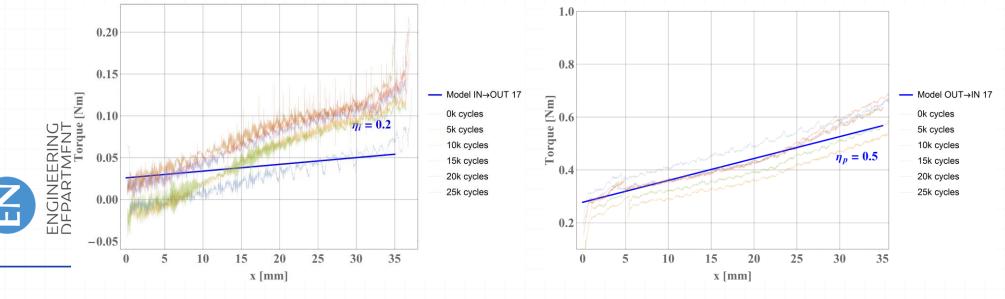
05.09.2017 Luca Gentini MME

LHC Collimation SIMULATION ON LUBRICATE UMBRA SCREW

MME Mechanical & Materials Engineering

 $F_{screw} \cong F_{spring} - Q \sin \beta$ $F_0 \cong F_{spring}(x=0)$ $T_{direct} = \frac{p F_0}{2 \pi \eta_p} + \mu \frac{d}{2} F_0 + \left(\frac{p K_{spring}}{2 \pi \eta_p} + \mu \frac{d}{2} K_{spring}\right) \boldsymbol{x}$ NGINEERING $T_{inverse} = \frac{p \eta_i F_0}{2 \pi} + \mu \frac{d}{2} F_0 + \left(\frac{p \eta_i K_{spring}}{2 \pi} + \mu \frac{d}{2} K_{spring}\right) \mathbf{x}$ With: UP OUT 17 pass of the screw d diameter of the screw IN • μ friction ball bearing • $\eta_{\mathcal{D}}$ direct efficiency (0.6) • η_i inverse efficiency (0.5) 18 OUT DOWN

From Carlo Zanoni



TORQUE TEST ANALYSIS ON LUBRICATE UMBRA SCREW

Screw 0017 OUT to IN

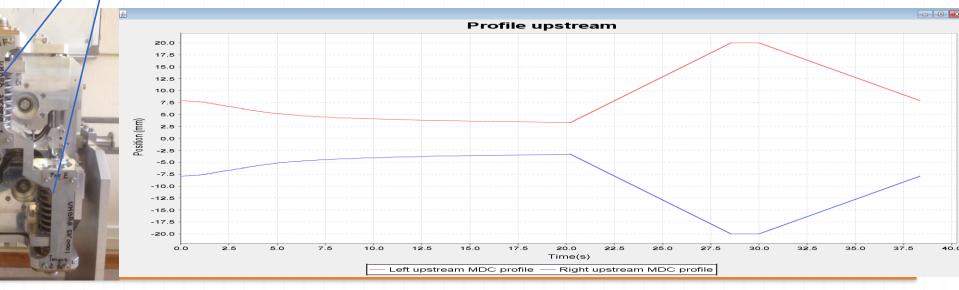
CONCLUSIONS

- There's an offset of ~0.1 Nm between curves of the same type but different cycles number
- There's no clear correlation between the number of cycles and the torque
- The measured efficiency is between 0.5 and 0.6, lower than what is expected by UMBRA (0.2)

From Carlo Zanoni

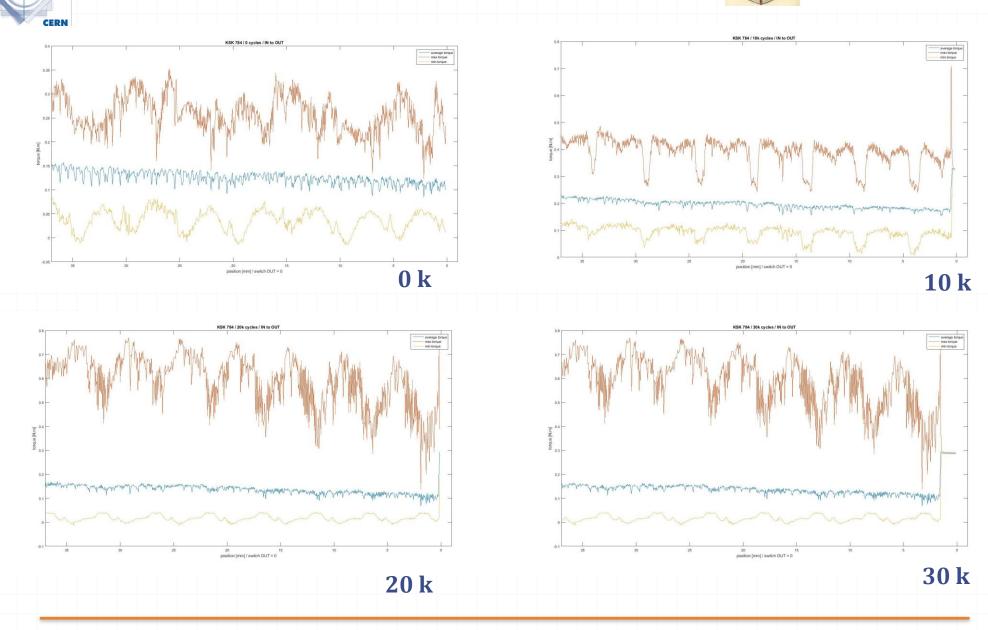
ENGINEERING DEPARTMENT

CYCLING TEST ON DRY KSK SCREWS


	0	Phase I	l actuation	system.
--	---	---------	-------------	---------

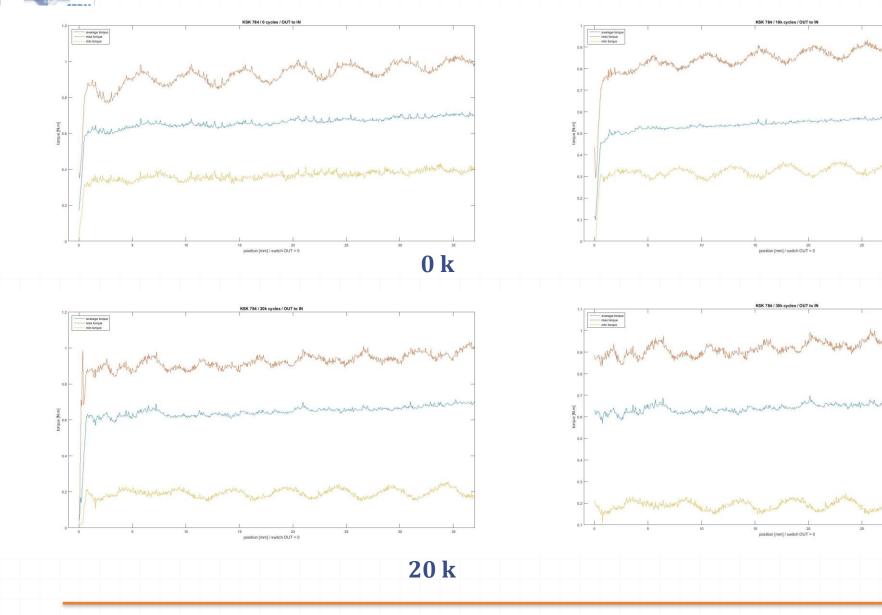
- All the screws must be submitted to 30.000 new cycle (same movement of a real collimator but accelerated).
- Torque measurements and screw visual inspection every 10.000 cycles.

Upper screw: Ø6.3 spring load- Jaw load = 1.4 kN max


Bottom screw: Ø6.3 spring load + Jaw load = 2 kN max

Test bench parameter	Value
Orientation	-90°
Mass	30 kg
Moment	74.3 Nm
Spring stiffness	12.97 N/mm
Spring free length	0.195 m
Spring length in x = 0	0.1195 m
Max spring force	1173.8 N
Min spring force	719.8 N
Vacuum force	713.4 N

LHC Collimation TORQUE TEST ANALYSIS ON DRY KSK SCREW


MME Mechanical

& Materials Engineering

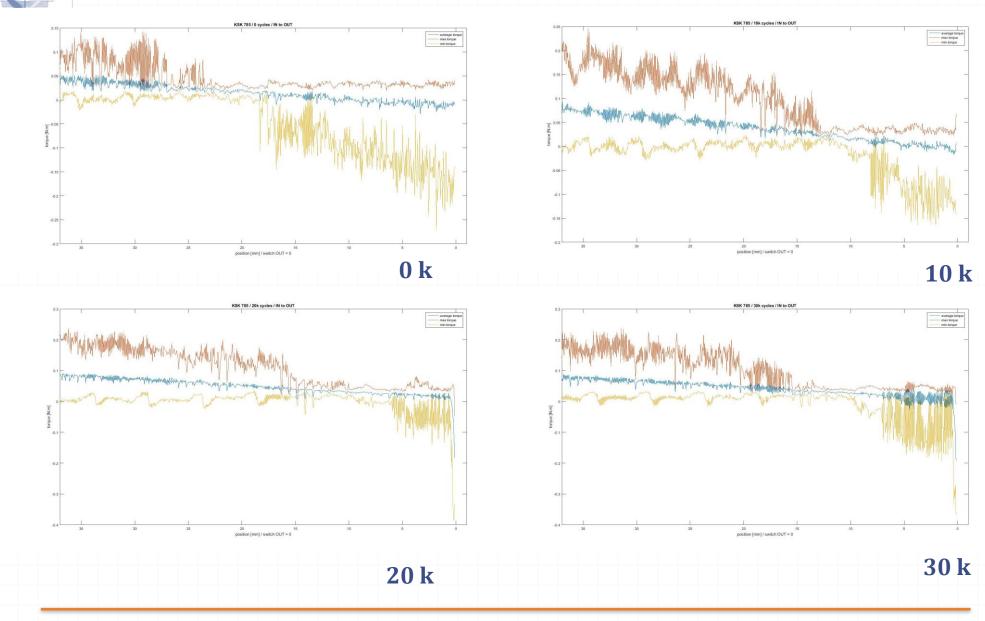
LHC Collimation Project TORQUE TEST ANALYSIS ON DRY KSK SCREW

Screw 784 (down 2 kN) OUT to IN

05.09.2017 Luca Gentini MME

HiColDem

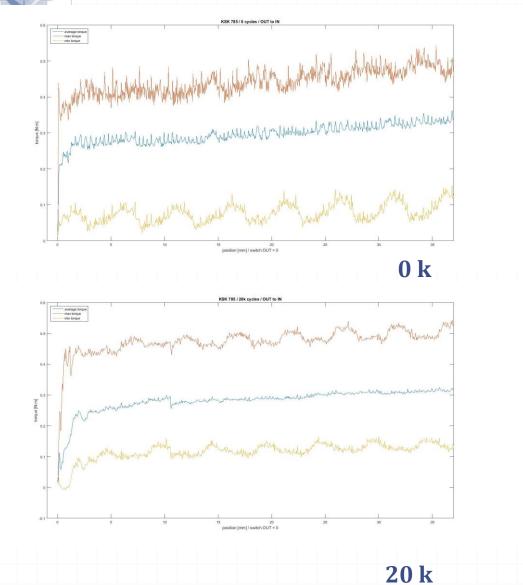
19

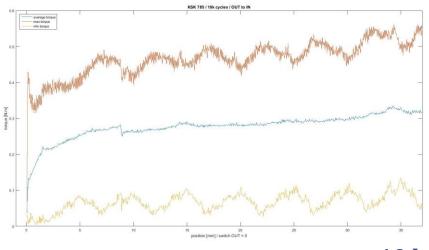

30 k

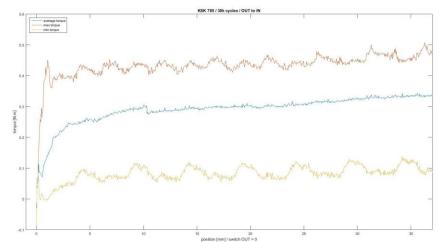
10 k

LHC Collimation Project TORQUE TEST ANALYSIS ON DRY KSK SCREW

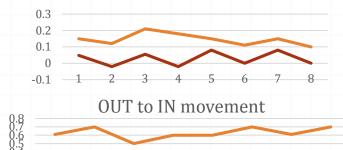
Screw 785 (up 1.4 kN) IN to OUT




LHC Collimation Project TORQUE TEST ANALYSIS ON DRY KSK SCREW


Screw 785 (up 1.4 kN) OUT to IN

MME Mechanical & Materials Engineering



30 k

05.09.2017 Luca Gentini MME

TORQUE TEST ANALYSIS ON DRY KSK SCREW

MME Mechanical & Materials Engineering

JP screw

CERN

ENGINEERING DEPARTMENT

				0	1)k	20)k	3	0k	
			IN	OUT	IN	OUT	IN	OUT	IN	OUT	•
-8	in to	0.04	48 -0.02	0.055	-0.02	0.08	0	0.08	0		
	out	Screw 784 DOWN	0.1	5 0.12	0.21	0.18	0.15	0.11	0.15	0.1	
					_				_	_	
			OU	T IN	OUT	IN	OUT	IN	OUT	IN	
	out	Screw 785 UP	0.2	5 0.32	0.25	0.31	0.25	0.31	0.25	0.32	!
	to in	Screw 784 DOWN	0.6	1 0.7	0.5	0.6	0.6	0.7	0.61	0.7	
in to	compressi	on) Screw 0017 UP	0.0	68	0.0)75		0.08		0.0	18
out	-	rew 0018 DOWN	0.			03	-	0.04		0.0	
out to	9	Screw 0017 UP	0.	07	0.	06		0.06		0.0)7
in	Sci	rew 0018 DOWN	0.	09	0	.1		0.1		0.0)9
				ue							
	DOWN (jaw load) 0			n							
			IN	OUT	IN	OUT			-	IN	0
		in to out	-0.102	-0.14	-0.155	-0.2	-0.0	7 -0.	11 - (0.07	-

-0.36

-0.38

-0.25

-0.29

-0.35

-0.39

-0.36

-0.38

Lubricated full Ceramic UMBRA screw <u>VS</u> dry KSK screws

DOWN screw

- Torques in positions IN and OUT are constants during the cycling test on both screws in both directions.
- The torques of the KSK are slight smaller than UMBRA screw (KSK Better efficiency).
- Torque difference between IN and OUT position is constant during the cycling test on both screws but slight lower on the KSK screw (**KSK efficiency constant increasing the load**).

out to in

• Torque difference between UP and DOWN screws is the same for both screws and constant during the cycling test.

SKF dry screw

Test n°	Screw N°	Load [kN]	Last Cycle	Note
1	8183493-15	1.4	300	Motor lost step
	8183493-25	2	3300	A lot of Noise

Dry roller screw whit Dicronite coating

ENGINEERING DEPARTMENT

Cycling test summary

Lubricate d

No

No

No

No

No

No

yes

yes

yes

yes No No

No No

No

No No

No

Supplier	Material
UMBRA	5250-00032 Ceramic /SS -20μm
UMBRA	5250-00032 Ceramic /SS -20µm
UMBRA	5250-00032 Ceramic /SS -20µm
UMBRA	5250-00032 Ceramic /SS -20μm
UMBRA	5250-00032 Ceramic /SS -20µm
UMBRA	5250-00032 Ceramic /SS -20μm
UMBRA	5250-00028 Full Ceramic
UMBRA	5250-00035 Full Ceramic
UMBRA	5250-00032 Ceramic /SS -40µm
UMBRA	5250-00033 Ceramic /SS -40µm
SKF	Full Stainless Steel + Dicornite
SKF	Full Stainless Steel + Dicornite
KSK	Full Stainless Steel
KSK	Full Stainless Steel

Lubricated UMBRA screw Possible replacement of SKF

Dry KSK screws

Validation after some others cycling test for statistic.

On-going Actions

KSK

٠

•

- Metallographic investigations.
 - Comparison between analytical data and theoretical simulations.
- Cycling test of others 2 screws for statistic.
- SKF
 - Metallographic investigations.
- Kugel motion: roller screws with WCC coating
 - Visual test. Done
 - Metrology test (EDMS: 1753580). Done
 - Cycling test of 4 screws.
 - Metallographic investigations.

