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Emittance Formula for Slits and Pepper-pot Measurement 

~Iin Zhang1 

Abstract 

In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. 
The derivation is based on the one-dimensional slit measurement setup. A mathematical 
generalization of the slit emittance formula to the pepper-pot measurement is discussed. 

1 Introduction 

With the development of high prec1s10n linear accelerator technologies, there comes a strong 
demand for high quality beam measurements. For example, in a Self-Amplified Spontaneous 
Emission (SASE) free electron laser [1]. it is required that the beam have as low as a few 71 mm­
mrad normalized transverse emittance at a Ge V energy level. For such small emittances, a precise 
measurement is badly needed. 

Two commonly used emittance measurement methods are: slits and pepper-pot (Fig. 1). The 
former is a one-dimensional emittance measurement device and the latter a two-dimensional one. 
For a space-charge dominated beam, the pepper-pot setup is more appropriate. It cuts an incident 
beam into small pieces - beamlets, which each has a very low charge. Figure 2 shows a typical 
setup of such measurements. 
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Figure 1: Beam masks in emittance measurement: slit plate (left) and pepper-pot plate (right) 

L is the distance between the slit plate (or pepper-pot) and the phosphor screen. For a low 
emittance beam, in order to have a high resolution. we need a big L. But a big L means a large 
space-charge emittance dilution to the beam. As known. any phosphor screen has a certain spot 
resolution limit. typically ~ = lOOµm. L is then roughly determined by the incident bcam·s 
geometrical divergence x' with L ~ ~· pis the number of slits. 
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Figure 2: Typical setup for emittance measurement: Incident beam comes from left. x is the 
slit or pepper-pot plate coordinate and X is that for the phosphor screen. Slits length runs 
perpendicularly to the paper. 

For a fixed beam radius at the slit plate. the beam divergence is given by x' = ~' with x~ being 

normalized beam divergence, and ; the Lorentz factor. x~ is a constant for different ; . So for a 
given phosphor screen resolution. lower energy beam is more favorable for a fixed L. But as known. 
low energy means a large space-charge emittance dilution, increasing the measurement errors. 

The intensity of beamlet spots on a phosphor screen is primarily proportional to the number of 
particles in the beamlets which are hitting the screen. 

\Ve use two coordinates to locate the beamlets: one for the slits ( x), the other for the screen ( X). 

Their origins do not need to be aligned. But they are assumed to have the same unit. It is also 
assumed that the size of slits is all the same and is very small compared with the beam size. So 
we can use the slit's center line as its location (xi). L is small enough so that there is no overlap 
between beamlet spots on the screen. Our goal is to find an emittance formula (Ex) which employs 
only geometrical parameters of the slits and the spots on screen. that is, slits position (:r 81 ), mean 
position of spots on screen ( Xj). and rms size of spots on screen ( o-1 ). 

It has to be made clear that a measured emittance is not beam's real mathematical emittance 
because of the following two reasons. Firstly, the measured emittance is based on a subset of 
particles instead of the whole beam. Secondly, there always exists space charge contribution to 
the final beamlets. So normally a measured emittance is at most an estimation of the real beam 
emittance. 

2 Derivation of Slit Emittance Formula 

Assume total number of particles before slit is M. their transverse positions and momenta are 

x'. is defined as (Fig. 3) 

positions (x;. y;) 

momenta (x'., y;). 

i=l.2 ..... M 

,\', - x, 
x, = --L--

( 1) 

(2) 



We only discuss x plane emittance (Ex) here. The Ey is identical to the following derivation. 
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Figure 3: Illustration of x;. L is the gap between the slit plate and the screen. 

Total rms emittance is defined by 

with 

Ex= V< x 2 >< x' 2 >-<xx' > 2
. 

1 ;\f 

i=-L:x;, 
;'v[ . 

z=l 

(3) 

( 4) 

Applying a mask to the beam, say, a slit plate, we have ~ particles behind the slit. Clearly. 
iY ::; Jf. This is a subset of the initial beam. Then the subset beam's rms emittance is given by 
Eqs. (3) and (4) with<•>= t 2::;~ 1 •. From now on we will only discuss this subset emittance. 

2.1 < x > 

1 x 
< x > i = v LXi 

• i=l 

1 n1 n2 np 

y-(LX1i+ LX2;+···+ LXpi) 
· z=l t=l z=l 

1 1 p 

:::::::; -\_(n1Xs1 + n2Xs2 + ... + npXsp) = ---;c L njXsj· 
• ~ j=l 

Xsj (j = 1, 2, ... ,p) is j-th slit position. pis the number of slits. n1 is number of particles through 
the j-th slit, which is proportional to the spot intensity on screen. Xji (j = 1, 2, · · · ,p and i = 
L 2, · · · , n1) are positions of particles passing through j-th slit. The whole set of { x j;} is exactly 
equal to {x;li = 1,2,···,S}. This grouping scheme is also made for spot positions {X1;} and 
beam divergences { x~;} in the following discussions. Clearly. 

n 1 + n 2 + · · · + nP = X. ( 6) 
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~ L~l Xji - Xsj 
x J = _1~--L---- (8) 

and 

(9) 

The latter is the mean position of j-th spot ·on the screen. The former can be rewritten as 

I xj - :f SJ 
x -

J - L ( 10) 

using Eq. (9). Then \Ve have 

( 11) 

\Ve can redo Eq. (11) by directly using x'.. 

I 

< x > 

Eq. ( 11) 
(12) 

It can be easily found that 

(13) 

From the righthand side, we know that xj is just the mean divergence of particles passing through 
the j-th slit. Equation (10) provides a way to evaluate it by using the beamlet spot information. 



If the origins of the two coordinates x and X do not coincide. say. X = x +a, we have 

( 14) 

This means that for each slit spot. its mean divergence is dependent on the coordinate alignment. 
But it will be demonstrated below that this does not affect the emittance as a whole. 

The above alignment error is also true for the overall mean divergence of the beamlets: 

(Fi) 

2.3 < x 2 > 

< x2 > 

(16) 

2.4 < x' 2 > 

< x'2 > 

( 11) 

From Eq. (13). we get 

Vj = L2 .... ,p. (18) 



With this equation, it is known that all the middle terms vanish. Then we obtain 

< /2 > = 
1 { n l I -, 2 - I - I 2 

S ~ (.r1; - .riJ + n1Cr1 - .r ) + 
n2 

I: (.r~i - ;~l2 + n2(;~ - ;,l2 + ... + 
i=l 

Define: 

which is the rms divergence of beamlet at the j-th slit. This value can be calculated by 

with 

which is the rms spot size of j-th beamlet on screen. 

Equation (21) can be proofed as follows: 
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\Vith Eq. (20), Eq. (19) can be written as below 

12 1 ~ [ 2 -, -, 2] < .r >= S ~ 11j/Jx~ + nj(.rj - .r) . 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

According to Eqs. (14) and (1.S). it 1s found that the value of < .r'2 > 1s independent of the 
alignment of .r and X origins. since 

I -, I I 

.r JO. - .r 'l = .r j - .r . (2.)) 



2.5 
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<xx > 
s 

I 1 ~ I -, 

<XX >= V L..,(Xi - i)(xi - 1·) 
. i=l 

(26) 

Let us first discuss the alignment of origins. From Eq. (2), it is straightforward to get 

Xji - Xsj a ' a 
L +L=x;+L. (21) 

In the above, it was assumed that the particle was from the j-th slit. \Vith Eq. (1.5), we know 

f -, f I 

Xia - Xa = X; - X. (28) 

This means that < xx' > is independent of the alignment of the origins. 
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Eq. (13) 

(29) 

2.6 

With Eq. (16) for< x 2 >. Eq. (24) for< x12 >.and Eq. (29) for< xx' >
2

, we obtain 

2 12 I 2 
< x >< x > -< .rx > 

This is the final slit emittance formula. All the terms in the formula are expressed by slit positions 
and beamlet spots parameters on the screen. Specifically. they are 

• X 8 j - j-th slit"s position: 

• p - total number of slits: 

• n 1 - number of particles passing through j-th slit and hitting the screen. Practically it is a 
weighting of spot intensity: 



• i: - mean position of all beamlet s ( Eq. ( 5)); 

• ;j - mean divergence of j-th beamlet ( Eq. ( 10) ): 

• ~' - mean divergence of all beamlets (Eq. (11)): 

• ~, - rms divergence of j-th beamlet (Eq. (21)). 
IJ 

2. 7 Generalization of Slit Emittance to Pepper-pot 

The generalization of the above slit emittance formula to the pepper-pot case is straightforward. 
Instead of projecting slit image lines to the x axis. we sum up all pepper-pot spot images in y 

direction for tr and in x direction forty (Fig. 4). 
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Figure 4: Illustration for slit and pepper-pot image analysis 

3 Closing Remarks 

There is a general question that what is the relationship between beam's real mathematical emit­
tance and that measured using either slits or pepper-pot, i.e. between total emittance and subset 
emittance. If this question can be addressed, \Ve are then in a position to give an estimation of 
measurement errors between t and tsubset and the difference between ts/its and tpepper-pot. 

For a subset slit emittance measurement. the formula derived in this note is mathematically rigid. 
This formula applies only to rms emittances, not to ellipse emittances. 

In a measurement setup, we do not need to align the slit plate coordinate with the screen ·s. be­
cause all the values in the formula are relative to their respective coordinates only. 

References 

[1] .. A VUV free electron laser at the TESLA test facility at DESY. Conceptual design report ... 
DESY Print. June 199.). TESLA-FEL 95-03 


