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Iransverse spaces

The REAL (x,y) space and the PHASE space are different
things

Their projections along x or y are however the same thing

Phase spaces contain the information needed for beam
dynamic calculations

X,y space Is easier to sample

Perform measurement in X,y and use optics parameters
and beam dynamic theories to calculate the phase space
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Phase space

Assume centre of distribution is (0, 0)
for simplicity =z =z, —(z) o/, =a/; — (&)




Phase space
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Beam maitrix




Courant-Snyder parameters

The phase space ellipse
can be defined by 4
parameters:

(&, 8,,7)
B 1 + o?
L

And the equation of
the ellipse Is:
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Adiabatic damping

Emittance is only constant in beamlines without acceleration

acceleration

P,
| _ * We measure the geometric
Normalised emittance emittance!
VS. 5]\7 — ﬁrewreﬁgeo e The normalised emittance
Geometric emittance is constant during

acceleration



Effect of dispersion

 [he phase space area
covered by the particles
X A AP

Ag — D22 depends also on dispersion
r and AP

e Emittance Is still conservedq:
The volume of the 6 dimension
phase space Is invariant

0 AP |
AP » Better measure the emittance

where D is O (can decouple
individual planes)



Why measure the
emittance?

e Emittance has a fundamental role in the size of the beams!
* Will the beam hit the accelerator aperture limitations?

* |s the phase-space of the beam matched to the
Courant-Snyder ellipse of the ring | am injecting into”

« Small dense beams is often what you want to produce
 Luminosity in colliders

* Brightness in light sources
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Why measure the emittance

Mismatch Linac/Booster

36 Measured Ellipse centered

=243 -12.2 0.0 122 243
HORIZONTAL Position mm

R Mismatched injected beam

Matched phase-space ellipse



Collider luminosity

* Luminosity determines the rate at which collisions
take place in a collider.

* Colliders are tuned to maximise the luminosity

7, — NbleQf’l“evkb 7 — Nbleerevkb
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QW\/(U:%l + 032:2>((7§1 + 052) A

Equal, round beams

0, = \Eifi 1€ [$1,y1,232,y2]
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Synchrotron light sources

* Experiment rely on diffraction of short, intense,
spatial coherent synchrotron radiation photon
pulses

* This applies to both storage rings and FEL

Beam brightness SR Spectral brightness
4
B_ 22[ B d* N
T=Exly dt dS2dS dX\/ A\
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Measuring the emittance

e [wo options
o Sample the phase space directly

e This is the preferred method for low energy beams (sources,
LEBT)

 Measure the transverse beam distributions in real space and use
beam dynamics relations (Twiss parameters) to infer the emittance

e Single profile measurement (rings)
* Multiple profiles measurement (transfer lines)
e Quadrupolar scans (transfer lines, LINACS)
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Phase space dynamics

Time »

Diverging
Anti-waist Converging Diverging
Converging 14



Drift space
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Slit and Grid

Xl

Moveable slit

profile monitor
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Slit and Grid

Range of electrons in Tungsten

17.5 A1

Slit must be narrow 1501
. 12.54

« Few particles go trough EN
§ 7.5 1

« Possible scattering on the sides of the slit

0.005 0.010 0.015 0.020 0.025

0.2 0.4 0.6 0.8 1.0
Energy [GeV]

Range of protons in Tungsten

Slit must be tick enough to stop particles Z:
Distance between slit and grid must be optimised |
e [Large to increase the sensitivity 300 1
« Beamlets should however fit in the profile ol T
monitor E
Grid is often moved with the slit to reduce the “100,
number of channels required 50
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Multl Slit

e Extend the concept of the slit
Screen and grld

Mask
/j » Why not adding many slits

.///< on the same blade?
§j » No need to scan the slit
<
* Single shot
measurement

» Grid replaced by screen
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Pepper Pot

* Extend the concept of the multi
slit

* Why not replacing the slits with
holes”

« Both planes (x, y) at the
same time

« Data analysis more
complicated

* High resolution on the screen
required
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Particles transport

In a linear system, like a system composed of drift
space and quadrupoles, the coordinates of a
particle In phase space can be transported using a

simple matrix notation
Fe{ Ry 1 B A R o B R 1
L1 L Lo L1 L3 Lo

x x x
LZ] = M3 Mo M, [xg] = Moy=3 [372]

|1 L 1 0] cos(VEkLQ) \/L_Sin(\/ELQ)
Mpyrift [O 1] Mquaa = [_% 1] = {\/Esin(\/ELQ) c]jos(\/ELQ) }

LQ—>O20 (QF, for QD it is different)



Twiss parameters transport

If one can transport each point of the phase
space one can also transport the ellipse and thus
the Courant-Snyder, a.k.a. Twiss, parameters

o3 c? 2cs 52 Bo
1| | C S L L / / / /
=1 / — a1| = (cc ¢cs +cs —SS Q)
L1 c S| |%o /2 . /2
Y1 C —2C's S Y0
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3 profiles emittance
measurement

« 3 Unknown (g, a, B) (y is calculated from a, B)

* |f we can make three measurement and write three
inear iIndependent equations we can solve the
system

Reference point where profile monitors

S, a, v will be determined
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3 profiles emittance
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3 profiles emittance

4| -= Profile Measurement =-
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3 profiles emittance

&
File Tools Optics Fit Data Zoom Dispersion
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Quadrupole strength scan

* Instead of measuring the beam size at different
position measure multiple times at the same position
changing the optics upstream in a known way

o Simplest solution is to change the strength of a
focusing quadrupole upstream the profile monitor

 The beam cannot be transported after the
quadrupole (we change the optics substantially!)

 Method cannot be used with "dangerous” beams
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Quad scan

Adjustable magnetic lens with settings 4,B,C
(quadrupole magnet, solenoid, system of quadrupole magnets...)

/

Wy, W, We

\ N

Reference point where profile monitor

S, a, v will be determined
(C S):(l Lj. m(1,,.) my(,,)
C' S’ O 1 m21 (Imag) m22 (Imag)
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Quad scan

* In principle three different values of the quadrupole
strength are sufficient (same equations as for the 3
profiles method)

* |n practice it Is very easy to acquire many
measurement points with the guad scan (while it is
not easy to add more than 3 profile monitors in a
ine)

* |f you have more than 3 measurements the problem
IS over constrained — use a minimisation routine (fit)
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Minimisation (fit)

Residuals

e |nput

 Model (parameters)

r; = measurement; — model(p1, pa2, - - );

Error = /Z 7“@-2

Min(Error) = (pg, D1, -+ )

* Measurements
* Free parameters (unknowns)
* Procedure

e Vary the free parameters

until you find a minimum
of the Error
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-1t example

* Data oy * Residual optimum x*
—— Fit 1.5 * Residual w & *
. . ** 3 7
1 —— Non optimised x % TR
X x %X
1.0 1 A LN
*, *‘ F P )
- o *¢* * W E
& 0.5 - x* * 2
f** * * * % (W]
% % o Ky gtk o% N KA K
0.0 - m*** . * b * o Jax 1
gL xR x SoF
~0.5 - F ¥ x
=
0 2 4 3] 8 10 0 2 4 6 8 10
X1 X1

Model: y(x)=a+b-x
Measurements: (z,9);

(a,0)

Parameters:
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Residuals histogram
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Quadrupole scan

x 107 Results of one of the Quad Scans

", * Quad Scan Data o
: Parabola Fit "

....................................

Fit:

d= drift space (L), I= quadrupole length (Lq)
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Plot the measured beam
sizes (211) agains the strength
of the quadrupole field (k)

Fit a parabola

Extract €, a, 3, y from the
parameters of the parabola

Jac

" T 2P
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Emittance measurement In
synchrotrons

 One can calculate the value of 3

Bs] (B0 [ 2 227 8] directly from this constraint (using
a(s)| = |a(s+O)| = |c¢ es'+s —ss'| 1a(s)|  the transport matrix)
V()] s+0)] @ —2ds s [(s)]
25 * |t is possible to measure the [3
B(s) = . ! )
JC2—c—sh2+c+s) function around the ring using
BPMs, k-modulation etc.
o = /e » Measure the beam size and derive
l the emittance from the optics
functions
A 2
o = \/ﬁs + p)
‘\  Measure in a dispersion free it
Measured Optics I\/Ieasured? pOSSIble
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Various emittance definitions

* \We have seen the RMS
emittance (from phase space
moments)

« Different people use different
definitions

e £o0% the ellipse that contains
90% of particles

e £95% the ellipse that contains

Agoy, O 90% of particles 95% of particles

Ago

e coms the ellipse at twice the
rms

E90% —
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(Gaussian phase space

A=Terms contains ~40% of particles w= 0
A=Ti€oms CcONtains ~86% of particles w= 20
A=Tiego% contains 90% of particles w= 2.150

A=Tiegs% contains 95% of particles w= 2.450
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Slice emittance

slice A sliceB

VARNE

X
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 |n electron LINACS

emittance may
change along the
bunch

Need for a time
resolved protile
measurement

e Streak camera

e Deflecting cavity



Slice emittance

Q9ACC/ Q9/T10ACC6 Q9/10ACCS Q9/10ACC4
e — T Hl ACC6 "l ACC5 "l ACC4
‘ /" LOLA T I |
Off-axis screen deflecting !
RF cavity Horizontal
Kicker . I
Example of set-up at 2 [
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That’s all tfolks!

Thank you for your attention



