

(Pedestrian) discussion on Meson PDFs

Future measurements of meson PDFs at CERN

- ◆ Drell-Yan data mainly sensitive to quark PDFs
 - Can be used to extract the valence PDF the sea PDFs
 - Electromagnetic process cross sections are low

- ◆ J/psi data sensitive to both quark and gluon PDFs
 - A big advantage cross sections are large (strong interaction process): factor of 30 40!
 - Interpretation?

What is needed for a reliable interpretation of the J/psi data?

Gluon PDF – Method-3: from J/ ψ production

lacktriangle Main processes contributing to J/ψ

q̄q

qq annihilation

gg

gg fusion

Gluon PDF extraction – examples

■ E537: 125 GeV/c: W target

Akerlof et al., PRD48, 5067 (1993)

How well can we extract the gluon distribution? What is the relative fraction of qq and gg components?

Models for J/psi production

◆ Color Evaporation Model

◆ NRQCD (factorization)

CEM calculations vs π -induced J/psi cross sections

Gavai et al., Int.J.Mod.Phys .A10, 3043 (1995)

J/psi production : summary of π -induced data

Beatrice Collaboration/Nuclear Physics B 557 (1999) 3-21

Dependence on the: factorization scale µ and charm mass M

Models form J/psi production – x dependence

PHYSICAL REVIEW C, VOLUME 61, 035203

x_F dependence of ψ and Drell-Yan production

R. Vogt

- ◆ CEM (Color Evaporation Model)
- ◆ NRQCD (factorization approach)

Example: use of kaon beam for J/psi production

◆ K− on a proton target

$$K^{-}(\overline{u}s) + p(uud) \sim \overline{u}_{K}u_{p} + g_{K}g_{p}$$

◆ K+ on a proton target

$$K^+(u\overline{s}) + p(uud) \sim - + g_K g_p$$

No valence quark term

The difference $K^- - K^+$ contains the valence-valence term only (within corrections)

- Results could be used to:
 - \blacksquare Determine the kaon g(x) and u(x) distributions?
 - Improve the J/psi production models at FT energies ?

Example: use of antiproton beam for J/psi production

- K- on a proton target $p^{-}(\overline{uu}\overline{d}) + p(uud) \sim \overline{u}_{p}u_{p} + \overline{d}_{p}d_{p} + g_{p}g_{p}$
- K+ on a proton target $p^+(uud) + p(uud) \sim + g_p g_p$

No valence quark term

The difference $p^- - p^+$ contains the valence-valence term only (within corrections)

- Results could be used to:
 - Proton quark and gluon distributions are known.
 - Check the subtraction procedure?

10

Feed-down contribution to J/psi

◆ From Gavai et al.,

Gavai et al., Int.J.Mod.Phys .A10, 3043 (1995)

Analysis of

