What Do We Learn from the Sivers Effect?

Dilepton Production with Meson and Antiproton Beams Trento, November 6-10, 2017

where it all started from ... (~1991)

Cross section for $p p \rightarrow \pi X$ in $p Q C D$
based on factorization theorem (in collinear configuration)

$$
\mathrm{d} \sigma=\sum_{a, b, c, d=q, \bar{q}, g} \underbrace{f_{a / p}\left(x_{a}\right) \otimes f_{b / p}\left(x_{b}\right)}_{\text {PDF }} \otimes \underbrace{\mathrm{d} \hat{\sigma}^{a b \rightarrow c d} \otimes \underbrace{D_{\pi / c}(z)}_{\mathrm{FF}}}_{\begin{array}{c}
\text { PQCD elementary } \\
\text { interactions }
\end{array}}
$$

mid-rapidity RHIC data, unpolarised cross sections

 (arXiv:1409.1907 [hep-ex], Phys. Rev. D91 (2015) 3, 032001)large P_{T} single pion production $p p \rightarrow \pi X$

good agreement between RHIC data and collinear pQCD calculations
(maybe x_{T} scaling not quite correct, Arleo-Brodsky)
but there are problems with spin dependent data ...
$A_{N}=$ simple left-right asymmetry

$$
A_{N}=\frac{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)-d \sigma^{\downarrow}\left(\boldsymbol{P}_{T}\right)}{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)+d \sigma^{\downarrow}\left(\boldsymbol{P}_{T}\right)}=\frac{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)-d \sigma^{\uparrow}\left(-\boldsymbol{P}_{T}\right)}{2 d \sigma^{\text {unp }}\left(P_{T}\right)}
$$

$$
A_{N} \equiv \frac{\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{P}_{T}\right) \propto \sin \theta
$$

transverse Single Spin Asymmetry (SSA)

SSA in $p p \rightarrow \pi X ?$

$$
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=\sum_{a, b, c, d=q, \bar{q}, g} \underbrace{\Delta_{T} f_{a}}_{\substack{\text { transversity }}} \otimes f_{b} \otimes \underbrace{\left[\mathrm{~d} \hat{\sigma}^{\uparrow}-\mathrm{d} \hat{\sigma}^{\downarrow}\right]}_{\text {PQCD elementary }} \otimes \underbrace{D_{\pi / c}}_{\mathrm{FF}}
$$

$$
A_{N}=\frac{\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \hat{a}_{N} \propto \frac{m_{q}}{E_{q}} \alpha_{s} \quad \begin{gathered}
\text { was considered } \\
\text { almost a theorem }
\end{gathered}
$$

A_{N} large and persistent at high energies

The birth of TMDs: D. Sivers PRD 41 (1990) 83

$$
G_{a / p}\left(x ; \mu^{2}\right) \rightarrow G_{a / p}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right)
$$

The relevance of the transverse momentum for the asymmetry can be seen from the venerable Chou-Yang ${ }^{1}$ model of the constituent structure of a transversely polarized proton. If we assume a correlation between the spin of the proton and the orbital motion of its constituents, Chou and Yang showed the existence of a nontrivial A_{N} in elastic scattering. The coherent dynamics which correlates the spin of the proton with the orbital angular momentum of the quarks and gluons can also produce a constituent-level asymmetry in transverse momentum:

$$
\begin{aligned}
\Delta^{N} G_{a / p(\uparrow)}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right) & =\sum_{h}\left[G_{a(h) / p(\uparrow)}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right)-G_{a(h) / p(\downarrow)}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right)\right] \\
& =\sum_{h}\left[G_{a(h) / p(\uparrow)}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right)-G_{a(h) / p(\uparrow)}\left(x,-\boldsymbol{k}_{T} ; \mu^{2}\right)\right]
\end{aligned}
$$

1 T. T. Chou and C. N. Yang, Nucl. Phys. B107, 1 (1976)

$$
\begin{aligned}
A_{N}\left[E \frac{d^{3} \sigma}{d^{3} p}\left(p p_{\uparrow} \rightarrow m X\right)\right] & \simeq \sum_{a b \rightarrow c d} \int d^{2} \boldsymbol{k}_{T}^{a} d x_{a} \int d^{2} \boldsymbol{k}_{T}^{b} d x_{b} \int d^{2} \boldsymbol{k}_{T C} \frac{d x_{c}}{x_{c}^{2}} \Delta^{N} G_{a / p_{\uparrow}}\left(x_{a}, k_{T}^{a} ; \mu^{2}\right) \\
& \times G_{b / p}\left(x_{b}, k_{T}^{b} ; \mu^{2}\right) D_{m / c}\left(x_{c}, k_{T}^{c}: \mu^{2}\right) \times \tilde{s} \frac{d \sigma}{d \tilde{t}}(a b \rightarrow c d) \delta(\tilde{s}+\tilde{t}+\tilde{u})
\end{aligned}
$$

.... this equation corresponds to a probabilistic formula in the original spirit of the parton model where the unknown soft nonperturbative dynamics have been absorbed into the specification of the density $\Delta^{\mathrm{N}} \mathrm{G} \ldots$

simple physical picture for Sivers effect (correlation between \mathbf{S} and \mathbf{k}_{\perp})

partonic larger scattering angle

$$
\mathrm{d} \sigma^{\uparrow} \neq \mathrm{d} \sigma^{\downarrow}
$$

Collins fragmentation function Nucl. Phys. B396 (1993) 161

It is shown that the azimuthal dependence of the distribution of hadrons in a quark jet is a probe of the transverse spin of the quark initiating the jet. This results in a new spin-dependent fragmentation function that acts at the twist-2 level.

Collins function

$$
\begin{aligned}
D_{h / q, \boldsymbol{s}_{q}}\left(z, \boldsymbol{p}_{\perp}\right) & =D_{h / q}\left(z, p_{\perp}\right)+\frac{1}{2} \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right) \\
& =D_{h / q}\left(z, p_{\perp}\right)+\frac{p_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)
\end{aligned}
$$

Collins, Nucl. Phys. B396 (1993) 161

It follows from the parity and time-reversal invariance of QCD that the number density of quarks is independent of the spin state of the initial hadron, so that we have

$$
\hat{f}_{a / A}\left(x,\left|k_{\perp}\right|\right) \equiv \int \frac{\mathrm{d} y^{-} \mathrm{d}^{2} y_{\perp}}{(2 \pi)^{3}} \mathrm{e}^{-i x p^{+} y^{-}+i k_{\perp} \cdot y_{\perp}}\langle p| \bar{\psi}_{i}\left(0, y^{-}, y_{\perp}\right) \frac{\gamma^{+}}{2} \psi_{i}(0)|p\rangle
$$

We have ignored here the subtleties needed to make this a gauge invariant definition: an appropriate path ordered exponential of the gluon field is needed [18].

Sivers suggested that the k_{\perp} distribution of the quark could have an azimuthal asymmetry when the initial hadron has transverse polarization. However, such an asymmetry is prohibited because QCD is time-reversal invariant....
premature death of Sivers effect?

gauge links have physical consequences: quark models for non vanishing Sivers function, SIDIS final state interactions

Brodsky, Hwang, Schmidt, PL B530 (2002) 99 - Collins, PL B536 (2002) 43
An earlier proof that the Sivers asymmetry vanishes because of time-reversal invariance is invalidated by the path-ordered exponential of the gluon field in the operator definition of parton densities. Instead, the time-reversal argument shows that the Sivers asymmetry is reversed in sign in hadron-induced hard processes (e.g., Drell-Yan), thereby violating naive universality of parton densities. Previous phenomenology with time-reversal-odd parton densities is therefore validated.

$$
\left[f_{1 T}^{q \perp}\right]_{\mathrm{SIDIS}}=-\left[f_{1 T}^{q \perp}\right]_{\mathrm{DY}}
$$

models of Sivers effect and gauge links, process dependence

SIDIS final state interactions $\left(\Rightarrow A_{N}\right)$

D-Y initial state interactions $\left(\Rightarrow-A_{N}\right)$

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344 Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032

SSA in hadronic processes: TMDs, a possible explanation Generalization of collinear scheme (GPM) (assuming factorization)

$$
\mathrm{d} \sigma^{\uparrow}=\sum_{a, b, c=q, \bar{q}, g} \underbrace{f_{a / p^{\uparrow}\left(x_{a}, \boldsymbol{k}_{\perp a}\right)} \otimes \underbrace{f_{b / p}\left(x_{b}, \boldsymbol{k}_{\perp b}\right)}_{\text {期 }} \otimes \mathrm{d} \hat{\sigma}^{a b \rightarrow c d}\left(\boldsymbol{k}_{\perp a}, \boldsymbol{k}_{\perp b}\right) \otimes \otimes \underbrace{D_{\pi / c}\left(z, \boldsymbol{p}_{\perp \pi}\right)}}_{\text {single spin effects in TMDs }}
$$

TMDs in simple parton model

TMDs = Transverse Momentum Dependent Parton Distribution Functions (TMD-PDF) or Transverse Momentum Dependent Fragmentation Functions (TMD-FF)

TMD-PDFs give the number density of partons, with their intrinsic motion and spin, inside a fast moving proton, with its spin.

$$
\boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{s}_{q} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{S} \cdot \boldsymbol{s}_{q}
$$

"Sivers effect" "Boer-Mulders effect"

there are 8 independent TMD-PDFs

$f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)$ unpolarized quarks in unpolarized protons unintegrated unpolarized distribution $g_{1 L}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate s_{L} of quark with S_{L} of proton unintegrated helicity distribution $h_{1 T}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad \begin{aligned} & \text { correlate ST of quark with ST of proton } \\ & \text { unintegrated transversity distribution }\end{aligned}$
only these survive in the collinear limit
$f_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)$ correlate k_{\perp} of quark with $\mathrm{S}_{\text {T }}$ of proton (Sivers) $h_{1}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate k_{\perp} and $s_{\text {t }}$ of quark (Boer-Mulders)

TMD-FFs give the number density of hadrons, with their momentum, originated in the fragmentation of a fast moving parton, with its spin.

$$
\boldsymbol{s}_{q} \cdot\left(\boldsymbol{p}_{q} \times \boldsymbol{p}_{\perp}\right) \quad \text { "Collins effect" }
$$

there are 2 independent TMD-FFs for spinless hadrons
$D_{1}^{q}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \quad$ unpolarized hadrons in unpolarized quarks $H_{1}^{\perp q}\left(z, \boldsymbol{p}_{\perp}^{2}\right)$ correlate p_{\perp} of hadron with $\mathrm{st}^{\text {T of }}$ quark (Collins)

TMDs in SIDIS

TMD factorization holds at large Q^{2}, and $P_{T} \approx k_{\perp} \approx \Lambda_{\mathrm{CCD}}$ Two scales: $P_{T} \ll Q^{2}$

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \phi} & =F_{U U}+\cos (2 \phi) F_{U U}^{\cos (2 \phi)}+\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi}+\lambda \frac{1}{Q} \sin \phi F_{L U}^{\sin \phi} \\
& +S_{L}\left\{\sin (2 \phi) F_{U L}^{\sin (2 \phi)}+\frac{1}{Q} \sin \phi F_{U L}^{\sin \phi}+\lambda\left[F_{L L}+\frac{1}{Q} \cos \phi F_{L L}^{\cos \phi}\right]\right\} \\
& +S_{T}\left\{\begin{array}{c}
\sin \left(\phi-\phi_{S}\right) F_{U T}^{\sin \left(\phi-\phi_{S}\right)}+\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin \left(\phi+\phi_{S}\right)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \\
\text { Sollinsers }
\end{array}\right. \\
& +\frac{1}{Q}\left[\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\phi_{S}\right)}+\sin \phi_{S} F_{U T}^{\sin \phi_{S}}\right] \\
& \left.+\lambda\left[\cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos \left(\phi-\phi_{S}\right)}+\frac{1}{Q}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

the $F_{S_{B}}^{(\cdots)}$ cont the TMDs; plen of Spin Asymmetries

at leading twist there are 8 independent azimuthal modulations, with different combinations of TMDs.

$$
\left.\left.\begin{array}{rl}
F_{U U} \sim \sum_{a} e_{a}^{2}\left(f_{1}^{a}\right) \otimes D_{1}^{a} & F_{L T}^{\cos \left(\phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2}\left(g_{1 T}^{\perp a}\right) \otimes D_{1}^{a} \\
\left.F_{L L} \sim \sum_{a} e_{a}^{2} \overparen{g_{1 L}^{a}}\right) \otimes D_{1}^{a} & F_{U T}^{\sin \left(\phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2}\left(f_{1 T}^{\perp a}\right) \otimes D_{1}^{a}
\end{array}\right\} \begin{array}{c}
\text { chiral-even } \\
\text { TMDs }
\end{array} \begin{array}{rl}
\left.F_{U U}^{\cos (2 \phi)} \sim \sum_{a} e_{a}^{2} h_{1}^{\perp a}\right) \otimes H_{1}^{\perp a} & F_{U T}^{\sin \left(\phi+\phi_{S}\right)} \sim \sum_{a} e_{a}^{2}\left(h_{1 T}^{a}\right) \otimes H_{1}^{\perp a} \\
\left.F_{U L}^{\sin (2 \phi)} \sim \sum_{a} e_{a}^{2} h_{1 L}^{\perp a}\right) \otimes H_{1}^{\perp a} & F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2}\left(h_{1 T}^{\perp a}\right) \otimes H_{1}^{\perp a}
\end{array}\right\} \begin{gathered}
\text { chiral-odd } \\
\text { TMDs }
\end{gathered}
$$

D_{1}^{a} is unpolarized fragmentation function $H_{1}^{\perp a}$ is Collins fragmentation function integrated $f_{1}^{q}(x)$ and $g_{1 L}^{q}(x)$ can be measured in usual DIS
origin of Sivers effect in SIDIS - $F_{U T}^{\sin \left(\phi-\phi_{S}\right)}$

$$
\left.\mathrm{d} \sigma^{\uparrow, \downarrow}=\sum_{q} f_{q / p^{\uparrow},}\right)\left(x, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes \mathrm{d} \hat{\sigma}\left(y, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes D_{h / q}\left(z, \boldsymbol{p}_{\perp} ; Q^{2}\right)
$$

$$
f_{q / p^{\uparrow, \downarrow}}\left(x, \boldsymbol{k}_{\perp}\right)=f_{q / p}\left(x, k_{\perp}\right) \pm \frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

$$
\left(\Delta^{N} f_{q / p^{\dagger}}=-\frac{2 k_{\perp}}{M} f_{1 T}^{\perp q}\right)
$$

$$
\sum_{q}^{\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) \underbrace{\boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)}_{\sin \left(6^{-}\right)} \otimes \mathrm{d} \hat{\sigma}\left(y, \boldsymbol{k}_{\perp}\right) \otimes D_{h / q}\left(z, \boldsymbol{p}_{\perp}\right)
$$

$$
\sin \left(\varphi-\phi_{S}\right) \quad \text { no } S S A \text { if } \mathbf{k}_{\perp}=0!
$$

$$
\begin{gathered}
\text { measured } \\
\text { quantity }
\end{gathered}\left\{\begin{array}{c}
2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle=A_{U T}^{\sin \left(\phi-\phi_{S}\right)} \\
\int \mathrm{d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi-\phi_{S}\right) \\
\int \mathrm{d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]
\end{array}\right.
$$

the Sivers effect has a simple physical picture...

$$
\begin{aligned}
& f_{q / p, \boldsymbol{S}}\left(x, \boldsymbol{k}_{\perp}\right)=f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\dagger}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& =f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
\end{aligned}
$$

left-right spin asymmetry for the process $\gamma^{*} q \rightarrow q$
the spin- \mathbf{k}_{\perp} correlation is an intrinsic property of the nucleon; it should be related to the parton orbital motion
extraction of u and d Sivers functions - first phase measured quantity

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=2 \frac{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right] \sin \left(\phi_{h}-\phi_{S}\right)}{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}+d \sigma^{\downarrow}\right]}
$$

TMD factorization at $\mathcal{O}\left(k_{\perp} / Q\right)$

$$
\begin{gathered}
\frac{d \sigma^{\ell p^{\uparrow} \rightarrow \ell h X}}{d x_{B} d Q^{2} d z_{h} d^{2} \boldsymbol{P}_{T}}=\sum_{q}\left(e_{q}^{2}\right) \int d^{2} \boldsymbol{k}_{\perp} f_{q / p^{\uparrow}}\left(x, \boldsymbol{k}_{\perp}\right) \sqrt{\frac{2 \pi \alpha^{2}}{x^{2} s^{2}} \frac{\hat{s}^{2}+\hat{u}^{2}}{Q^{4}}} D_{h / q}\left(z, \boldsymbol{p}_{\perp}\right) \\
f_{q / p^{\uparrow}}\left(x, \boldsymbol{k}_{\perp}\right)=f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
\sum_{q} \int d \phi_{S} d \phi_{h} d^{2} \boldsymbol{k}_{\perp} f_{q / p}\left(x, k_{\perp}\right) \frac{d \hat{\sigma}^{\ell q \rightarrow \ell q}}{d Q^{2}} D_{q}^{h}\left(z, p_{\perp}\right)
\end{gathered}
$$

$$
\text { two different notations } \Delta^{N} f_{q / p^{\uparrow}}=-\frac{2 k_{\perp}}{M_{p}} f_{1 T}^{\perp q}
$$

simple parameterisations

$$
\begin{aligned}
& \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}, Q\right)=2 \mathcal{N}(x) h\left(k_{\perp}\right) \underbrace{f_{q / p}(x, Q)}_{f_{q / p}\left(x, k_{\perp}\right)} \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle} \\
& \mathcal{N}_{q}(x)=N_{q} x^{\alpha_{q}}(1-x)^{\beta_{q}} \frac{\left(\alpha_{q}+\beta_{q}\right)^{\left(\alpha_{q}+\beta_{q}\right)}}{\alpha_{q}^{\alpha_{q}} \beta_{q}^{\beta_{q}}} \\
& h\left(k_{\perp}\right)=\sqrt{2 e} \frac{k_{\perp}}{M_{1}} e^{-k_{\perp}^{2} / M_{1}^{2}} \\
& D_{h / q}\left(z, p_{\perp}\right)=D_{h / q}(z) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle}
\end{aligned}
$$

Q^{2} evolution only taken into account in the collinear part (usual DGLAP PDF evolution)
M.A, M. Boglione, U. D'Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, Phys. Rev. D71 (2005) 074006; Eur. Phys. J. A39 (2009) 89 (results in agreement with those of several other groups)
most recent extraction of the Sivers functions
M.A, M. Boglione, U. D'Alesio, F. Murgia, A. Prokudin, JHEP 1704 (2017) 046

TMDs and QCD - TMD evolution

how does gluon emission affect the parton transverse motion? TMD phenomenology - phase 2
Different TMD evolution schemes and different implementations within the same scheme it needs non perturbative inputs

> dedicated workshops, QCD Evolution 2011, 2012, 2013, 2014, 2015, 2016, 2017

dedicated tools:

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions
study of the QCD evolution of TMDs and
TMD factorisation in rapid development
Collins, "Foundations of perturbative QCD", Cambridge University Press (2011)

TMD phenomenology - phase 2
how does gluon emission affect the transverse motion?

a few selected results, examples

TMD evolution of up quark Sivers function

Aybat, Collins, Qiu, Rogers, Phys. Rev. D85 (2012) 034043

TMD evolution of up quark Sivers function

Evolved Torino Gaussian Fits
Up Quark Sivers Function, $x=0.1$

Aybat, Collins, Qiu, Rogers, Phys.Rev. D85 (2012) 034043
TMD evolution of Sivers function studied also by Echevarria, Idilbi, Kang, Vitev, Phys. Rev. D89 (2014) 074013
more on the Sivers effect, what does it teach us? it induces distortions in the parton distributions

$$
f_{q / p, \boldsymbol{S}^{(}}\left(x, \boldsymbol{k}_{\perp}\right)=f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

$$
=f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

Sivers function and orbital angular momentum

Ji's sum rule
forward limit of GPDs

$$
J^{q}=\frac{1}{2} \int_{0}^{1} d x x\left[H^{q}(x, 0,0)+E^{q}(x, 0,0)\right]
$$

usual PDF $q(x) \quad$ measured directly
anomalous magnetic moments

$$
\begin{gathered}
\kappa^{p}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{u_{v}}(x, 0,0)-E^{d_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\kappa^{n}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{d_{v}}(x, 0,0)-E^{u_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\left(E^{q_{v}}=E^{q}-E^{\bar{q}}\right)
\end{gathered}
$$

Sivers function and orbital angular momentum

assume

$$
\begin{aligned}
& \left.\qquad \begin{array}{l}
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right) \\
f_{1 T}^{\perp(0) a}(x, Q)
\end{array}\right) \int d^{2} \boldsymbol{k}_{\perp} \widehat{f}_{1 T}^{\perp a}\left(x, k_{\perp} ; Q\right) \\
& L(x)=\text { lensing function } \\
& \text { (unknown, can be computed in models) }
\end{aligned}
$$

parameterize Sivers and lensing functions
fit SIDIS and magnetic moment data obtain E^{q} and estimate orbital angular momentum results at $Q^{2}=4 \mathrm{GeV}^{2}: J^{u} \approx 0.23, \mathrm{~J}^{\neq u} \approx 0$ Bacchetta, Radici, PRL 107 (2011) 212001

TMDs in Drell-Yan processes

COMPASS, RHIC, Fermilab, NICA, AFTER...

factorization holds, two scales, M^{2}, and $q_{T} \ll M$ $\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}}$ direct product of TMDs, no fragmentation process

Case of one polarized nucleon only

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q \mathrm{~d} \Omega}= & \frac{\alpha^{2}}{\Phi q^{2}}\left\{\left(1+\cos ^{2} \theta\right) F_{U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U}^{2}+\sin 2 \theta \cos \phi F_{U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U}^{\cos 2 \phi}\right. \\
+ & S_{L}\left(\sin 2 \theta \sin \phi F_{L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L}^{\sin 2 \phi}\right) \\
+ & S_{T}\left[\left(F_{T}^{\sin \phi_{S}}+\cos ^{2} \theta \tilde{F}_{T}^{\sin \phi_{S}}\right) \sin \phi_{S}+\sin 2 \theta\left(\sin \left(\phi+\phi_{S}\right) F_{T}^{\sin \left(\phi+\phi_{S}\right)}\right.\right. \\
& \left.+\sin \left(\phi-\phi_{S}\right) F_{T}^{\sin \left(\phi-\phi_{S}\right)}\right) \longleftarrow \text { Sivers effect } \\
+ & \left.\left.\sin ^{2} \theta\left(\sin \left(2 \phi+\phi_{S}\right) F_{T}^{\sin \left(2 \phi+\phi_{S}\right)}+\sin \left(2 \phi-\phi_{S}\right) F_{T}^{\sin \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

Collins-Soper

 frame
origin of Sivers effect in DY processes

By looking at the $d^{4} \sigma / d^{4} q$ cross section one can single out the Sivers effect in D-Y processes

$$
\begin{aligned}
& \mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow} \propto \sum_{q} \Delta^{N} f_{q / p^{\uparrow}}\left(x_{1}, \boldsymbol{k}_{\perp 1}\right) \otimes f_{\bar{q} / p}\left(x_{2}, k_{\perp 2}\right) \otimes \mathrm{d} \hat{\sigma} \\
& q=u, \bar{u}, d, \bar{d}, s, \bar{s}
\end{aligned}
$$

$$
A_{N}^{\sin \left(\phi_{S}-\phi_{\gamma}\right)} \equiv \frac{2 \int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi_{S}-\phi_{\gamma}\right)}{\int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}
$$

with the simple parameterization of the unpolarized and Sivers distributions one has:

$$
\begin{gathered}
A_{N}^{\sin \left(\phi_{\gamma}-\phi_{S}\right)}\left(x_{F}, M, q_{T}\right)=\frac{\int d \phi_{\gamma}\left[N\left(x_{F}, M, q_{T}, \phi_{\gamma}\right)\right] \sin \left(\phi_{\gamma}-\phi_{S}\right)}{\int d \phi_{\gamma}\left[D\left(x_{F}, M, q_{T}\right)\right]} \\
\begin{aligned}
& N\left(x_{F}, M, q_{T}, \phi_{\gamma}\right) \equiv \frac{d^{4} \sigma^{\top}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}}-\frac{d^{4} \sigma^{\downarrow}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}} \\
&=\frac{4 \pi \alpha^{2}}{9 M^{2} s} \sum_{q} \frac{e_{q}^{2}}{x_{1}+x_{2}} \Delta^{N} f_{q / A \Lambda}\left(x_{1}\right) f_{\bar{q} / B}\left(x_{2}\right) \sqrt{2 e} \frac{q_{T}}{M_{1}} \frac{\left\langle k_{S}^{2}\right\rangle^{2} \exp \left[-q_{T}^{2} /\left(\left\langle k_{s}^{2}\right\rangle+\left\langle k_{\perp 2}^{2}\right\rangle\right)\right]}{\pi\left[\left\langle k_{S}^{2}\right\rangle+\left\langle k_{\perp 2}^{2}\right\rangle\right]^{2}\left\langle\left\langle k_{\perp 2}^{2}\right\rangle\right.} \sin \left(\phi_{S}-\phi_{\gamma}\right) \\
& D\left(x_{F}, M, q_{T}\right) \equiv \frac{1}{2}\left[\frac{d^{4} \sigma^{\uparrow}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}}+\frac{d^{4} \sigma^{\downarrow}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}}\right]=\frac{d^{4} \sigma^{u n p}}{d x_{F} d M^{2} d^{2} \boldsymbol{q}_{T}} \\
&=\frac{4 \pi \alpha^{2}}{9 M^{2} s} \sum_{q} \frac{e_{q}^{2}}{x_{1}+x_{2}} f_{q / A}\left(x_{1}\right) f_{\bar{q} / B}\left(x_{2}\right) \frac{\exp \left[-q_{T}^{2} /\left(\left\langle k_{\perp 1}^{2}\right\rangle+\left\langle k_{\perp 2}^{2}\right\rangle\right)\right]}{\pi\left[\left\langle k_{\perp 1}^{2}\right\rangle+\left\langle k_{\perp 2}^{2}\right\rangle\right]}
\end{aligned}
\end{gathered}
$$

the unpolarized cross section has a simple qT gaussian dependence

$$
d \sigma \sim \frac{\exp \left[-q_{T}^{2} /\left(2\left\langle k_{\perp}^{2}\right\rangle\right)\right.}{2 \pi\left\langle k_{\perp}^{2}\right\rangle} \quad\left(\left\langle k_{\perp 1}^{2}\right\rangle=\left\langle k_{\perp 2}^{2}\right\rangle\right)
$$

fit of unpolarized D-Y data, S. Melis

$$
f_{q / p}\left(x, k_{\perp}\right)=f_{q}(x) \frac{1}{\pi\left\langle k_{\perp}^{2}\right\rangle} e^{-k_{\perp}^{2} /<k_{\perp}^{2} \eta}
$$

a different $\left\langle k_{\perp}^{2}\right\rangle$ for each set of data

dependence of $\left\langle k_{\perp}^{2}\right\rangle$ with energy?

Predictions for A_{N} - no TMD evolution

Sivers functions as extracted from SIDIS data, with opposite sign

M.A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, PR D79 (2009) 054010

what about the sign change?

First results from RHIC, $p^{\uparrow} p \rightarrow W^{ \pm} X$
STAR Collaboration, PRL 116 (2016) 132301

some hints at a sign change of the Sivers function.....

some caution still necessary ...

experimental data up to large p_{t} values, beyond the validity of TMD factorization. TMD evolution might strongly suppress the asymmetry
M.A, M. Boglione, U. D'Alesio, F. Murgia, A. Prokudin, JHEP 1704 (2017) 046

(a)
estimates of the Sivers asymmetry A_{N} for $W^{+}(a)$ and $W^{-}(b)$ production, assuming a sign change of the SIDIS Sivers
functions, compared with the experimental data as function of y_{w}

$$
\begin{aligned}
& \left\langle\chi^{2} / \text { n.o.d. }\right\rangle=1.63 \quad \text { with sign change } \\
& \left\langle\chi^{2} / \text { n.o.d. }\right\rangle=2.35 \quad \text { with no sign change }
\end{aligned}
$$

First results from RHIC, $p^{\uparrow} p \rightarrow Z^{0} X$ STAR Collaboration, PRL 116 (2016) 132301

prediction with sign change

Sivers asymmetry in DY at COMPASS arXiv:1704.00488

Sivers asymmetry in $\pi p^{\uparrow} \rightarrow J / \Psi X \rightarrow e^{+} e^{-} X$ at COMPASS M.A., V. Barone, M. Boglione, PLB 770 (2017) 302

in central region $x_{1} \simeq x_{2} \simeq 0.16$ same as usual D-Y with

$$
x_{1,2}=\frac{M}{\sqrt{s}} e^{ \pm y} \quad x_{F}=\frac{2 q_{L}}{\sqrt{s}}=x_{1}-x_{2}=\left(x_{1}-\frac{M^{2}}{s x_{1}}\right)=\left(\frac{M^{2}}{s x_{2}}-x_{2}\right)
$$

$A_{N}^{J / 4}\left(\pi^{-} x_{1}, x_{2}, \boldsymbol{q}_{T}\right) \simeq \frac{\int d^{2} \boldsymbol{k}_{\perp 1} d^{2} \boldsymbol{k}_{\perp 2} \delta^{2}\left(\boldsymbol{k}_{\perp 1}+\boldsymbol{k}_{\perp 2}-\boldsymbol{q}_{T}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}}_{2} \times \hat{\boldsymbol{k}}_{\perp 2}\right) f_{\bar{u} / \pi^{-}}\left(x_{1}, k_{\perp 1}\right) \Delta^{N} f_{u / p^{p}} t\left(x_{2}, k_{\perp 2}\right)}{2 \int d^{2} \boldsymbol{k}_{\perp 1} d^{2} \boldsymbol{k}_{\perp 2} \delta^{2}\left(\boldsymbol{k}_{\perp 1}+\boldsymbol{k}_{\perp 2}-\boldsymbol{q}_{T}\right) f_{\bar{u} / \pi^{-}}\left(x_{1}, k_{\perp 1}\right) f_{u / p}\left(x_{2}, k_{\perp 2}\right)}$
$A_{N}^{J / \Psi}\left(\pi^{+} x_{1}, x_{2}, \boldsymbol{q}_{T}\right) \simeq \frac{\int d^{2} \boldsymbol{k}_{\perp 1} d^{2} \boldsymbol{k}_{\perp 2} \delta^{2}\left(\boldsymbol{k}_{\perp 1}+\boldsymbol{k}_{\perp 2}-\boldsymbol{q}_{T}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}}_{2} \times \hat{\boldsymbol{k}}_{\perp 2}\right) f_{\bar{d} / \pi^{+}}\left(x_{1}, k_{\perp 1}\right) \Delta^{N} f_{d / p^{\dagger}}\left(x_{2}, k_{\perp 2}\right)}{2 \int d^{2} \boldsymbol{k}_{\perp 1} d^{2} \boldsymbol{k}_{\perp 2} \delta^{2}\left(\boldsymbol{k}_{\perp 1}+\boldsymbol{k}_{\perp 2}-\boldsymbol{q}_{T}\right) f_{\bar{d} / \pi^{+}}\left(x_{1}, k_{\perp 1}\right) f_{d / p}\left(x_{2}, k_{\perp 2}\right)}$

predictions with SIDIS extracted Sivers functions, with sign change large asymmetries, worth measuring

about the Sivers effect:

it deeply probes the internal momentum structure of the nucleon; it is experimentally well established with first extraction of the Sivers function ...
it must be related to (valence) parton orbital motion ...
it might be related to QCD gauge links and our current understanding of TMD factorization ...
it is crucial to test its sign change and its universality

Thank you!

