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What Do We Learn from the Sivers Effect?
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FIG. 5. (color online) Invariant cross sections for (a) ⇡+ and (b) ⇡� with pQCD predictions using the DSS [37] and AKK08 [39]
FFs. Top panel: PHENIX [52] and STAR [53] results are also compared. Bottom: systematic (boxes) and statistical (bars)
uncertainties are shown with relative di↵erence between data and prediction. (c) Comparison of averaged charged pion cross
section and ⇡

0 cross section by PHENIX [54]. Bottom panel: data-theory comparisons.

TABLE II. Invariant cross section for ⇡+ and ⇡

� hadrons, as well as the statistical and systematic uncertainties. In addition,
there is an absolute scale uncertainty of 9.6%.

⇡

+
⇡

�

pT bin hpT i E ⇤ d3�
dp3

STAT SYST E ⇤ d3�
dp3

STAT SYST

(GeV/c) (GeV/c) (mb/GeV

2) (mb/GeV

2)
5–6 5.39 1.75⇥10�5 0.05⇥10�5 0.24⇥10�5 1.49⇥10�5 0.04⇥10�5 0.20⇥10�5

6–7 6.39 5.01⇥10�6 0.15⇥10�6 0.33⇥10�6 4.30⇥10�6 0.13⇥10�6 0.29⇥10�6

7–8 7.41 1.56⇥10�6 0.07⇥10�6 0.10⇥10�6 1.283⇥10�6 0.060⇥10�6 0.080⇥10�6

8–9 8.44 6.19⇥10�7 0.39⇥10�7 0.40⇥10�7 4.94⇥10�7 0.35⇥10�7 0.32⇥10�7

9–11 9.71 2.14⇥10�7 0.16⇥10�7 0.14⇥10�7 1.57⇥10�7 0.13⇥10�7 0.10⇥10�7

11–13 11.70 4.83⇥10�8 0.71⇥10�8 0.38⇥10�8 3.57⇥10�8 0.60⇥10�8 0.28⇥10�8

A more quantitative interpretation requires the inclu-
sion of such data into a global fit using the next-to-
leading order (NLO) pQCD framework. The midrapidity
production of charged pions with 5 < pT < 12 GeV/c atp
s = 200 GeV covers the kinematic range of 0.03 <⇠ x

<⇠
0.16. The relevant ingredients for a global analysis are
available: unpolarized quark and gluon PDFs, polarized
quark PDFs, charge-separated unpolarized FFs [37] and
hard scattering cross sections at NLO. The invariant dif-
ferential cross sections for ⇡

+ and ⇡

� as a function of
pT can be used to check the validity of the NLO pQCD
calculation as well as the PDFs and FFs adopted for the
global analysis on �G.

The double-spin asymmetry ALL for inclusive charged
pion production is measured as

ALL =
1

hPB · PY i
N

++ �R ·N+�

N

++ +R ·N+� , R =
L

++

L

+� (2)

where N is the number of charged pions and L is the lu-
minosity for a given helicity combination. The notation
++ (+�) follows the same convention as in Eq. 1. The

polarizations of the two counter-circulating RHIC beams
are denoted as PB and PY and for 2009 were 0.56 and
0.55, respectively. The luminosity-weighted beam polar-
ization product hPBPY i, important for ALL, was 0.31
with a global relative scale uncertainty of 6.5% on the
product. An additional uncertainty based on the preci-
sion with which we can determine the degree of longitu-
dinal polarization in the collision [56] must be included,
leading to a total relative scale uncertainty of +7.0%

�7.7%.

The relative luminosity, R, between the sampled lu-
minosities for the di↵erent helicities is determined from
the yield of BBC triggered events on a fill-by-fill basis.
The systematic uncertainty on relative luminosity is de-
termined by comparing to the yield of ZDC triggers [56],
and was found in 2009 to be 1.4⇥ 10�3.

Beyond the systematic uncertainties from polarization
and relative luminosity, the dominant systematic uncer-
tainty on the asymmetries are from tracks misidentified
as charged pions. The size of the possible asymmetry
from this background was determined to be ⇠ 10�4.
The determination was performed by calculating the spin

mid-rapidity RHIC data, unpolarised cross sections  
(arXiv:1409.1907 [hep-ex], Phys. Rev. D91 (2015) 3, 032001)

good agreement between RHIC data and collinear 
pQCD calculations 

(maybe xT scaling not quite correct, Arleo-Brodsky) 
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Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 

p
s = 19.4 GeV/c2, E704
p

s = 62.4 GeV/c2, PHENIX 3.2 < ⌘ < 3.7
p

s = 200 GeV/c2, STAR h⌘i = 3.3
p

s = 200 GeV/c2, STAR h⌘i = 3.7
p

s = 500 GeV/c2, STAR 2.7 < ⌘ < 4.0

AN  large and persistent at high energies ….          



The birth of TMDs: D. Sivers     
PRD 41 (1990) 83 

The relevance of the transverse momentum for the asymmetry can be seen 
from  the  venerable  Chou-Yang1  model  of  the  constituent  structure  of  a 
transversely polarized proton. If we assume a correlation between the spin of 
the proton and the orbital motion of its constituents, Chou and Yang showed 
the existence of a nontrivial AN in elastic scattering. The coherent dynamics 
which correlates the spin of the proton with the orbital angular momentum 
of the quarks and gluons can also produce a constituent-level asymmetry in 
transverse momentum:

1 T. T. Chou and C. N. Yang, Nucl. Phys. B107, 1 (1976)
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simple physical picture for Sivers effect 
(correlation between S and k⊥) 
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It  is  shown  that  the  azimuthal  dependence  of  the  distribution  of 
hadrons in a quark jet is a probe of the transverse spin of the quark 
initiating the jet. This results in a new spin-dependent fragmentation 
function that acts at the twist-2 level.

Collins fragmentation function   
Nucl. Phys. B396 (1993) 161

Dh/q,sq
(z,p�) = Dh/q(z, p�) +

1
2

�NDh/q�(z, p�) sq · (p̂q ⇥ p̂�)

= Dh/q(z, p�) +
p�

zMh
H�q

1 (z, p�) sq · (p̂q ⇥ p̂�)

X

Collins 
function 



2 Spin-Dependence of Parton Distribution and Fragmentation Functions

In this section, I will first review the formal definitions of the parton distribution and frag-
mentation functions when there is a measured transverse momentum. Then I will show how
to extend the definitions to treat nontrivial polarization. These quantities will get used in
factorization formulae for the cross section, as explained in later sections.

In the usual factorization theorems [15,16], one works with parton densities integrated
over transverse momentum. But when one has a cross section with a measured small trans-
verse momentum variable, one must use the unintegrated distributions. In QCD, there are
some interesting effects associated with Sudakov form factors, that make the resulting fac-
torization theorems quite nontrivial [17]. The Sudakov effects are spin-independent, and
we will not bother making them explicit here, since our purpose is to examine the novel
effects associated with polarization. However when the energy of the experiment increases,
the Sudakov effects will dilute our asymmetries by smearing out the transverse momentum
distributions.

We will denote the unpolarized distribution and fragmentation functions by fi/H and DH/i

respectively, when transverse momentum is integrated over. To denote the corresponding
quantities with unintegrated transverse momentum, we will use the same symbols, but with
a hat over them: f̂i/H and D̂H/i.

2.1 Parton Distribution Functions

We define parton distribution functions by formulae motivated by light-front quantization.
These quantities are precisely those that occur in the factorization theorems [18,19,20].

It follows from the parity and time-reversal invariance of QCD that the number density
of quarks is independent of the spin state of the initial hadron, so that we have

f̂a/A(x, |k⊥|) ≡
∫ dy− d2y⊥

(2π)3
e−ixp+y−+ik⊥·y⊥⟨p| ψ̄i(0, y

−, y⊥)
γ+

2
ψi(0) |p⟩. (1)

We have ignored here the subtleties needed to make this a gauge invariant definition: an
appropriate path ordered exponential of the gluon field is needed [18]. The coordinate
frame in which this definition is applied is one in which the hadron |p⟩ has zero transverse
momentum: p⊥ = 0.

Sivers [21] suggested that the k⊥ distribution of the quark could have an azimuthal
asymmetry when the initial hadron has transverse polarization. However, such an asymmetry
is prohibited because QCD is time-reversal invariant. This is shown in the appendix.

As explained in [10,22], we must consider the quark (or gluon) a to be equipped with a
helicity density matrix. Since QCD is invariant under parity and time reversal, the density
matrix for a quark differs from unity only if the initial hadron A is itself polarized. Then

4

It follows from the parity and time-reversal invariance of QCD that 
the number density of quarks is independent of the spin state of the 
initial hadron, so that we have

We have  ignored  here  the  subtleties  needed  to  make  this  a  gauge 
invariant  definition:  an appropriate  path ordered exponential  of  the 
gluon field is needed [18]. 

Sivers suggested that the k⊥ distribution of the quark could have an 
azimuthal  asymmetry  when  the  initial  hadron  has  transverse 
polarization. However, such an asymmetry is prohibited because QCD 
is time-reversal invariant....

Collins, Nucl. Phys. B396 (1993) 161

premature death of Sivers effect?
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SIDIS final state interactions

gauge links have physical consequences;  
quark models for non vanishing Sivers function,

[fq�
1T ]SIDIS = �[fq�

1T ]DY

An earlier proof that the Sivers asymmetry vanishes because of time-reversal 
invariance is invalidated by the path-ordered exponential of the gluon field in the 
operator  definition  of  parton  densities.  Instead,  the  time-reversal  argument 
shows that  the Sivers  asymmetry is  reversed in sign in hadron-induced hard 
processes  (e.g.,  Drell-Yan),  thereby  violating  naive  universality  of  parton 
densities.  Previous phenomenology with time-reversal-odd parton densities  is 
therefore validated.

Brodsky, Hwang, Schmidt, PL B530 (2002) 99 - Collins, PL B536 (2002) 43



Figure 4: Diagrammatic representation of the origin of complex phase leading to the single-spin
asymmetry in SIDIS. The longer cut denotes the final state of the process, while the shorter
cut demonstrates the origin of the phase needed for the asymmetry.

3.2 Drell-Yan Process

We now perform a similar calculation for the Drell-Yan process in the same model consid-
ered above for deep inelastic scattering. We will consider the scattering of an antiquark on a
transversely-polarized proton with transverse spin eigenvalue � that produces a virtual photon,
which then decays into a dilepton pair with invariant mass q2 = Q2. This process is shown in
Fig. 5 at the level of virtual photon production: q + p" ! �⇤

+ X.

�

�

p

�
p p � r

�

q

��
q � r

r
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(B)

k

q � kq � r

k � r
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q
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Figure 5: Diagrams for the q + p" ! �⇤
+ X DY amplitude at one-loop order (A) and tree-

level (B). The incoming proton and anti-quark are denoted by the lower and upper solid lines
correspondingly, with the outgoing diquark denoted by the dashed line.

Following [9], we work in a generic frame collinear to the proton (~p? =

~
0?). We define the

longitudinal momentum fraction of the photon to be � ⌘ q+/p+ and the momentum fraction
exchanged in the t-channel to be � ⌘ r+/p+. As before, four-momentum conservation and the

15

SIDIS final state interactions (⇒ AN)

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344                                            
Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032

Figure 6: Diagrammatic representation of the origin of complex phase leading to the single-spin
asymmetry in the Drell-Yan process. The longer cut denotes the final state of the process, while
the shorter cut demonstrates the origin of the phase needed for the asymmetry.

It is interesting to investigate the diagrammatic origin of the sign-flip in Eqs. (61) and (62).
To do that we consider the diagram contributing to the single-spin asymmetry in the Drell-Yan
process shown in Fig. 6. As follows from the calculation in Appendix B, the asymmetry in
the Drell-Yan case arises due to putting the (q � k)- and k-lines in Fig. 5 (A) (corresponding
to lines ¨ and ≠ in Figs. 13 and 14) on mass-shell: this is illustrated in Fig. 6 by the second
(shorter) cut, in analogy to Fig. 4. Comparing Figures 6 and 4, we see that the minus sign in
Eqs. (61) and (62) arises due to the replacement of the outgoing eikonal quark in Fig. 4 by the
incoming eikonal anti-quark in Fig. 6: this is in complete analogy with the original Wilson-line
time-reversal argument of Collins [8] (see also [36]).

However, a closer inspection of Figures 4 and 6 reveals that the cuts generating the complex
phase appear to be different: in Fig. 4 the (shorter) cut crosses the struck quark and the diquark
lines, while in Fig. 6 the (shorter) cut crosses the anti-quark line and the line of the quark in
the proton wave function. While we have already identified the outgoing quark/incoming anti-
quark duality in SIDIS vs. DY as generating the sign flip, the fact that in the proton’s wave
function the diquark is put on mass shell in SIDIS and the quark is put on mass shell in DY
makes one wonder why the absolute magnitudes of the asymmetries in Eq. (62) are equal. After
all, different cuts may lead to different contributions to the magnitudes of the asymmetry.

Ultimately the origin of Eq. (62) is in the fact that spin-asymmetry is a pseudo T -odd
quantity and the Wilson lines describing the outgoing quark in SIDIS and the incoming anti-
quark in DY are related by a time-reversal transformation [8]. However, in the diagrams at
hand the origin of the equivalence of the shorter cuts in Figs. 4 and 6 is as follows. Consider the
splitting of a polarized proton into a quark and a diquark as shown in Fig. 7: this subprocess
is common to both diagrams in Figs. 4 and 6. The essential difference between Figs. 4 and 6
that we are analyzing is in the fact that in Fig. 4 the diquark is on mass shell, while in Fig. 6
the quark is on mass shell.

Concentrating on the denominators of the quark and diquark propagators in Fig. 7 we shall
write for the SIDIS case of Fig. 4 (quark is off mass shell, diquark is on mass shell)

1

k2
�
�
(p � k)

2 � �2
�

=

�1

p+ (

~k2
? + a2

)

�

 
k� � M2

p+
+

~k2
? + �2

(1 � �) p+

!
⇡ �1

p+ (

~k2
? + a2

)

�(k�
), (66)

where we have used Eqs. (21), (34), and (30) along with x ⇡ �, and, in the last step, neglected
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D-Y initial state interactions (⇒ -AN)

models of Sivers effect and gauge 
links, process dependence [fq�

1T ]SIDIS = �[fq�
1T ]DY
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SSA in hadronic processes: TMDs, a possible explanation
Generalization of collinear scheme (GPM) 

(assuming factorization)
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 TMDs = Transverse Momentum Dependent 
Parton Distribution Functions (TMD-PDF) or  

Transverse Momentum Dependent 
Fragmentation Functions (TMD-FF)

TMD-PDFs give the number density of partons, with 
their intrinsic motion and spin, inside a fast moving 

proton, with its spin.

S · (p⇥ k�) sq · (p⇥ k�) S · sq · · ·
“Sivers effect” “Boer-Mulders effect”

TMDs in simple parton model 
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correlate sL of quark with SL of proton 
unintegrated helicity distribution 

correlate sT of quark with ST of proton 
unintegrated transversity  distribution 

unpolarized quarks in unpolarized protons 
unintegrated unpolarized distribution 

only these survive in the collinear limit 

there are 8 independent TMD-PDFs
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TMD-FFs give the number density of hadrons, with 
their momentum, originated in the fragmentation of a 

fast moving parton, with its spin.

“Collins effect”sq · (pq ⇥ p�)

there are 2 independent TMD-FFs for spinless hadrons

Dq
1(z,p2

?) unpolarized hadrons in unpolarized quarks 
unintegrated fragmentation function 

H?q
1 (z,p2

?) correlate p⊥ of hadron with sT of quark (Collins)



TMDs in SIDIS 
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TMD factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

PT � Q2Two scales:

d�⇥p�⇥hX =
�

q

fq(x,k⇥;Q2)� d�̂⇥q�⇥q(y, k⇥;Q2)�Dh
q (z,p⇥;Q2)

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

TMD-PDFs hard scattering TMD-FFs

P T ' p? + z k?
xB ' x zh ' z



d⇥

d⇤
= FUU + cos(2⇤) F cos(2�)

UU
+

1
Q

cos ⇤ F cos �
UU

+ �
1
Q

sin⇤ F sin �
LU

+ SL

⇧
sin(2⇤) F sin(2�)

UL
+

1
Q

sin⇤ F sin �
UL

+ �

⇤
FLL +

1
Q

cos ⇤ F cos �
LL

⌅⌃

+ ST

⇧
sin(⇤� ⇤S)F sin(���S)

UT
+ sin(⇤ + ⇤S) F sin(�+�S)

UT
+ sin(3⇤� ⇤S) F sin(3���S)

UT

+
1
Q

⇤
sin(2⇤� ⇤S) F sin(2���S)

UT
+ sin⇤S F sin �S

UT

⌅

+ �

⇤
cos(⇤� ⇤S) F cos(���S)

LT
+

1
Q

�
cos ⇤S F cos �S

LT
+ cos(2⇤� ⇤S)F cos(2���S)

LT

⇥⌅⌃

Sivers Collins

the             contain 
the TMDs; plenty 

of Spin 
Asymmetries

F (··· )
SB ST

2 Will be inserted by the editor

where we have j(x) =
∫

d2pT j(x,p2
T ) for j = fa

1 , ea, gT , hL while ga
1(x) =

∫

d2pT ga
1L(x,p2

T )
and ha

1(x) =
∫

d2pT {ha
1T (x,p2

T ) + p2
T /(2M2

N)h⊥a
1T (x,p2

T )}.
The fragmentation of unpolarized hadrons is described in terms of two fragmentation func-

tions, Da
1 and H⊥a

1 , at leading-twist. In SIDIS (with polarized beams and/or targets, where
necessary) it is possible to access information on the leading twist TMDs by measuring the
angular distributions of produced hadrons. Some data on such processes are available [27–45].

The fragmentation functions and TMDs in SIDIS and other processes were subject to nu-
merous studies in the literature [46–73]. This is true especially for the prominent transversity
distribution ha

1 or the ’naively time-reversal-odd’ functions like the Sivers function f⊥a
1T , the

Boer-Mulders function h⊥a
1 and the Collins fragmentation function H⊥a

1 . Among the so far less
considered functions are h⊥a

1L and the ’pretzelosity’ distribution h⊥a
1T .

The purpose of this lecture (based on the works [67,68]) is fourfold. First, we discuss whether
some of the unknown TMDs could be approximated in terms of (possibly better) known ones.
Second, we review what is known about h⊥a

1T . Third, we mention the models these TMDs were
calculated. Fourth, we present estimates for SSAs in which these functions enter, and discuss
the prospects to measure these SSAs in experiments at Jefferson Lab and COMPASS.
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Fig. 1. Kinematics of SIDIS, lN → l′hX, and the
definitions of azimuthal angles in the lab frame.

The process of SIDIS is sketched in Fig. 1.
We denote the momenta of the target, in-
coming and outgoing lepton by P , l and l′

and introduce s = (P + l)2, q = l − l′ with

Q2 = −q2. Then y = Pq
Pl , x = Q2

2Pq , z = PPh

Pq ,

and cos θγ = 1− 2M2

N
x(1−y)
sy where θγ denotes

the angle between target polarization vector
and momentum q of the virtual photon γ∗,
see Fig. 1, and MN is the nucleon mass. The
component of the momentum of the produced
hadron transverse with respect to γ∗ is de-
noted by Ph⊥ and Ph⊥ = |Ph⊥|.

The cross section differential in the azimuthal angle φ of the produced hadron has schemat-
ically the following general decomposition [7,74] (the dots indicate power suppressed terms):
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+ . . . (3)

In Fweight
XY the index X = U(L) denotes the unpolarized (longitudinally polarized, helicity λ)

beam. Y = U(L, T ) denotes the unpolarized target (longitudinally, transversely with respect to
the virtual photon polarized target). The superscript reminds on the kind of angular distribution
of the produced hadrons with no index indicating an isotropic φ-distribution.

Each structure function arises from a different TMD. The chirally even f ’s and g’s enter the
observables in connection with the unpolarized fragmentation function Da

1 , the chirally odd h’s
in connection with the chirally odd Collins fragmentation function H⊥a

1
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will provide vital information on the large x behaviour of the Sivers distribution functions, yet undetermined from
present SIDIS experiments, as explained in Section IV.

II. FORMALISM AND PARAMETERIZATION

The SIDIS transverse single spin asymmetry (SSA) Asin(φh−φS)
UT measured by HERMES and COMPASS is defined

as (see Fig. 1 for the definition of the azimuthal angles)

Asin(φh−φS)
UT = 2

∫

dφS dφh [dσ↑ − dσ↓] sin(φh − φS)
∫

dφS dφh [dσ↑ + dσ↓]
, (1)

and shows the azimuthal modulation triggered by the correlation between the nucleon spin and the quark intrinsic
transverse momentum. This effect is embodied in the Sivers distribution function ∆Nfq/p↑(x, k⊥), which appears in
the number density of unpolarized quarks q with intrinsic transverse momentum k⊥ inside a transversely polarized
proton p↑, with three-momentum P and spin polarization vector S,

f̂q/p↑(x, k⊥) = fq/p(x, k⊥) +
1

2
∆Nfq/p↑(x, k⊥) S · (P̂ × k̂⊥) , (2)

where fq/p(x, k⊥) is the unpolarized x and k⊥ dependent parton distribution, and the mixed product S · (P̂ × k̂⊥)
explicitly gives the azimuthal dependence mentioned above. Notice that the Sivers function is also often denoted as
f⊥q
1T (x, k⊥) [14]; this notation is related to ours by [15]

∆Nfq/p↑(x, k⊥) = −2 k⊥
mp

f⊥q
1T (x, k⊥) . (3)

The “weighting” factor sin(φh − φS) in Eq. (1) is appropriately chosen to single out, among the various azimuthal
dependent terms appearing in [dσ↑−dσ↓] [16, 17], only the contribution of the Sivers mechanism. By properly taking
into account all intrinsic motions this transverse single spin asymmetry can be written, at order (k⊥/Q), as [2]

Asin(φh−φS)
UT =

∑

q

∫

dφS dφh d2k⊥ ∆Nfq/p↑(x, k⊥) sin(ϕ − φS)
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q
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dφS dφh d2k⊥ fq/p(x, k⊥)
dσ̂ℓq→ℓq

dQ2
Dh

q (z, p⊥)

· (4)

φS and φh are the azimuthal angles identifying the directions of the proton spin S and of the outgoing hadron
h respectively, while ϕ defines the direction of the incoming (and outgoing) quark transverse momentum, k⊥ =

k⊥(cos ϕ, sin ϕ, 0), as shown in Fig. 1; dσ̂ℓq→ℓq

dQ2 is the unpolarized cross section for the elementary scattering ℓq → ℓq,

dσ̂ℓq→ℓq

dQ2
= e2

q
2πα2

ŝ2

ŝ2 + û2

Q4
, (5)

where ŝ, t̂ = −Q2 and û are the partonic Mandelstam invariants.
Finally, Dh

q (z, p⊥) is the fragmentation function describing the hadronization of the final quark q into the detected
hadron h with momentum P h (see Fig. 1); h carries, with respect to the fragmenting quark, a light-cone momentum
fraction z and a transverse momentum p⊥.

In our analysis we shall consider u, d and s flavours for quarks and antiquarks. The Sivers function is parameterized
in terms of the unpolarized distribution function, as in Ref. [2], in the following factorized form:

∆Nfq/p↑(x, k⊥) = 2Nq(x)h(k⊥) fq/p(x, k⊥) , (6)

with

Nq(x) = Nq xαq (1 − x)βq
(αq + βq)(αq+βq)

α
αq
q β

βq
q

, (7)
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fraction z and a transverse momentum p⊥.
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It is instructive, and often quite accurate, to consider the above equations in the much simpler limit in which only
terms of O(k⊥/Q) are retained. In such a case x ≃ xB, z ≃ zh and one obtains:

d5σℓp→ℓhX

dxB dQ2 dzh d2P T
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where p⊥ ≃ P T − zh k⊥, Eq. (29), and
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B
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1 − y cosϕ

)
. (33)

In what follows we assume, both for the parton densities and the fragmentation functions, the usual factorization
between the intrinsic transverse momentum and the light-cone fraction dependences, with a Gaussian k⊥ dependence,
that is:

fq(x, k⊥) = fq(x)
1

π⟨k2
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⊥/⟨k2

⊥⟩ (34)

and
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q (z)
1

π⟨p2
⊥⟩

e−p2

⊥/⟨p2
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so that
∫

d2k⊥ fq(x, k⊥) = fq(x) (36)

and
∫

d2p⊥ Dh
q (z, p⊥) = Dh

q (z) . (37)

With the above expressions of fq(x, k⊥) and Dh
q (z, p⊥) the d2k⊥ integration in Eq. (32) can be performed analyti-

cally, with the result, valid up to O(k⊥/Q):
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[
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cosφh

]
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T /⟨P 2

T ⟩ , (38)

where

⟨P 2
T ⟩ = ⟨p2

⊥⟩ + z2
h⟨k2

⊥⟩ . (39)

This approximate result illustrates very clearly the origin of the dependence of the unpolarized SIDIS cross section
on the azimuthal angle φh. As observed first by Cahn [3, 23], such a dependence is related to the parton intrinsic
motion and it vanishes when k⊥ = 0. Having also taken into account the intrinsic motion in the fragmentation process,
Eq. (38) also depends on ⟨p2

⊥⟩, via the quantity ⟨P 2
T ⟩ defined in Eq. (39).

As we said, the above results hold in the small PT ≃ ΛQCD ≃ k⊥ region, where corrections O(k2
⊥/Q2) are expected

to be small. As we shall see in the next Section the numerical results obtained from Eq. (31) or from Eq. (38) are
indeed very close.

III. CAHN EFFECT IN UNPOLARIZED SIDIS

We wish to obtain experimental information on the average intrinsic motions. Our strategy is that of trying to
describe several sets of experimental data, which explicitly measure the dependence of the SIDIS unpolarized cross
section on the azimuthal angle φh between the lepton plane and the hadron production plane, and on the transverse
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In our analysis we shall consider u, d and s flavours for quarks and antiquarks. The Sivers function is parameterized
in terms of the unpolarized distribution function, as in Ref. [2], in the following factorized form:

∆Nfq/p↑(x, k⊥) = 2Nq(x)h(k⊥) fq/p(x, k⊥) , (6)

with

Nq(x) = Nq xαq (1 − x)βq
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will provide vital information on the large x behaviour of the Sivers distribution functions, yet undetermined from
present SIDIS experiments, as explained in Section IV.

II. FORMALISM AND PARAMETERIZATION

The SIDIS transverse single spin asymmetry (SSA) Asin(φh−φS)
UT measured by HERMES and COMPASS is defined

as (see Fig. 1 for the definition of the azimuthal angles)

Asin(φh−φS)
UT = 2

∫

dφS dφh [dσ↑ − dσ↓] sin(φh − φS)
∫

dφS dφh [dσ↑ + dσ↓]
, (1)

and shows the azimuthal modulation triggered by the correlation between the nucleon spin and the quark intrinsic
transverse momentum. This effect is embodied in the Sivers distribution function ∆Nfq/p↑(x, k⊥), which appears in
the number density of unpolarized quarks q with intrinsic transverse momentum k⊥ inside a transversely polarized
proton p↑, with three-momentum P and spin polarization vector S,

f̂q/p↑(x, k⊥) = fq/p(x, k⊥) +
1

2
∆Nfq/p↑(x, k⊥) S · (P̂ × k̂⊥) , (2)

where fq/p(x, k⊥) is the unpolarized x and k⊥ dependent parton distribution, and the mixed product S · (P̂ × k̂⊥)
explicitly gives the azimuthal dependence mentioned above. Notice that the Sivers function is also often denoted as
f⊥q
1T (x, k⊥) [14]; this notation is related to ours by [15]

∆Nfq/p↑(x, k⊥) = −2 k⊥
mp

f⊥q
1T (x, k⊥) . (3)

The “weighting” factor sin(φh − φS) in Eq. (1) is appropriately chosen to single out, among the various azimuthal
dependent terms appearing in [dσ↑−dσ↓] [16, 17], only the contribution of the Sivers mechanism. By properly taking
into account all intrinsic motions this transverse single spin asymmetry can be written, at order (k⊥/Q), as [2]

Asin(φh−φS)
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∑
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∫
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dσ̂ℓq→ℓq
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dQ2
Dh

q (z, p⊥)

· (4)

φS and φh are the azimuthal angles identifying the directions of the proton spin S and of the outgoing hadron
h respectively, while ϕ defines the direction of the incoming (and outgoing) quark transverse momentum, k⊥ =

k⊥(cos ϕ, sin ϕ, 0), as shown in Fig. 1; dσ̂ℓq→ℓq

dQ2 is the unpolarized cross section for the elementary scattering ℓq → ℓq,

dσ̂ℓq→ℓq

dQ2
= e2

q
2πα2

ŝ2

ŝ2 + û2

Q4
, (5)

where ŝ, t̂ = −Q2 and û are the partonic Mandelstam invariants.
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q (z, p⊥) is the fragmentation function describing the hadronization of the final quark q into the detected
hadron h with momentum P h (see Fig. 1); h carries, with respect to the fragmenting quark, a light-cone momentum
fraction z and a transverse momentum p⊥.

In our analysis we shall consider u, d and s flavours for quarks and antiquarks. The Sivers function is parameterized
in terms of the unpolarized distribution function, as in Ref. [2], in the following factorized form:

∆Nfq/p↑(x, k⊥) = 2Nq(x)h(k⊥) fq/p(x, k⊥) , (6)

with

Nq(x) = Nq xαq (1 − x)βq
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Figure 1. Extracted Sivers distributions for u = uv + ū, d = dv +

¯

d, ū and ¯

d at Q

2
= 2.4 GeV2.

Left panel: the first moment of the Sivers functions, Eqs. (2.16) and (2.17) of the text, versus x.
Right panel: plots of the Sivers functions, Eq. (2.14) of the text, at x = 0.1 versus k?. The solid
lines correspond to the best fit. The dashed lines correspond to the positivity bound of the Sivers
functions. The shaded bands correspond to our estimate of 95% C.L. error.

It means that we assume the anti-quark Sivers functions to be proportional to the cor-
responding unpolarised PDFs; we have checked that a fit allowing for more complicated
structures of Eq. (2.14) for the anti-quarks, results in undefined values of the parameters ↵
and �.

The Sivers asymmetry measured in SIDIS can be expressed using our parameterisations
of TMD functions from Eqs. (2.12-2.15, 3.4) as

A

sin(�h��S)

UT (x, y, z, PT ) =

[z

2hk2?i+ hp2?i]hk2Si2
[z

2hk2Si+ hp2?i]2hk2?i
exp

"
� P

2

T z

2

(hk2Si � hk2?i)
(z

2hk2Si+ hp2?i)(z2hk2?i+ hp2?i)

#

⇥
p
2 e z PT

M

1

P
q e

2

q Nq(x)fq(x)Dh/q(z)P
q e

2

q fq(x)Dh/q(z)
· (3.6)

Thus, we introduce a total of 9 free parameters for valence and sea-quark Sivers functions:
Nuv , Ndv , Nū, N ¯d, ↵u, �u, ↵d, �d, and M

2

1

(GeV2). In order to estimate the errors on the
parameters and on the calculation of the asymmetries we follow the Monte Carlo sampling
method explained in Ref. [8]. That is, we generate samples of parameters ↵i, where each
↵i is an array of random values of {Nuv , Ndv , Nū, N ¯d,↵u,↵d,�u,�d,M

2

1

}, in the vicinity of
the minimum found by MINUIT, ↵

0

, that defines the minimal total �2 value, �2

min

. We
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most recent extraction of the Sivers functions
M.A, M. Boglione, U. D’Alesio, F. Murgia, A. Prokudin, JHEP 1704 (2017) 046
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TMDs and QCD - TMD evolution  

 TMD phenomenology - phase 2
how does gluon emission affect the parton transverse motion?

dedicated workshops, QCD Evolution 
2011, 2012, 2013, 2014, 2015, 2016, 2017

Different TMD evolution schemes and different 
implementations within the same scheme          

it needs non perturbative inputs

study of the QCD evolution of TMDs and 
TMD factorisation in rapid development 

TMDlib and TMDplotter: library and plotting tools for 
transverse-momentum-dependent parton distributions

dedicated tools:

Collins, “Foundations of perturbative QCD”, Cambridge University Press (2011)



Aybat, Collins, Qiu, Rogers, Phys. Rev. D85 (2012) 034043

 TMD phenomenology - phase 2
how does gluon emission affect the transverse motion?

a few selected results, examples
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FIG. 1: (Color online.) The (negative of the) up quark Sivers function at x = 0.1 evolved from Q =
√
2.4 GeV(solid maroon)

to Q = 5 GeV(dashed blue) and Q = 91.19 GeV(dot-dashed red). The upper plot is found by evolving the Gaussian fits of
the Bochum group [14] and the lower plot is found by evolving the Gaussian fits of the Torino group [15]. In the case of the
Bochum fits, the down quark Sivers function is just the negative of the up quark one. For the Torino fits, the down quark
Sivers function is obtained by multiplying the up quark Sivers function by −1.35. These functions acquire an overall reversal
of sign if used in Drell-Yan.

lattice QCD calculations [48] can aid in providing mean-
ingful parametrizations of the nonperturbative input over
the whole of phase space and open up interesting ques-
tions regarding the matching of purely nonperturbative
descriptions of the Sivers function to pQCD.

C. Evolved Gaussian Parametrizations

Figure 1 suggests that, apart from the tail at large
kT , the Sivers function continues to be well described by
a Gaussian shape, even after evolution to large Q. To
describe the evolution of a purely Gaussian parametriza-
tion, with the x and kT dependence factorized, requires
only a specification of the scale dependence of the Gaus-
sian parameters. This saves having to directly calculate
Eq. (44), and its transformation to momentum space,
separately for each value of Q and x. Because of the
general convenience of working with Gaussian functions,
we have obtained Gaussian fits for a range of Q starting
at Q =

√
2.4 GeV for the Bochum and Torino fits up

to Q = 90 GeV. The fits are obtained using the Wol-
fram Mathematica 7 FindFit routine, and examples
are shown as the dashed curves in Fig. 2. A table of the
resulting values for the Gaussian parameters is shown in
Table I. (Fortran, C++, and Wolfram Mathematica

7 code that produce evolved Gaussian fits is available

at [49].)

In Fig. 2, we illustrate the quality of the Gaussian
fits to the Sivers function at intermediate and large
Q (Q = 5 GeV and 91.19 GeV, respectively). In
practice, the Sivers effect is often probed via observ-
ables like Eq. (52), so we have plotted the integrand,
−2πk3TF

⊥ up
1T (x, kT ;µ,Q). Note that, after the evolution

to large Q, the −2πk3TF
⊥ up
1T (x, kT ;µ,Q) acquires a very

broad tail for both the Bochum and Torino fits. The
tail falls off slowly; for Q = 91.19 GeV, the ratio of the
value of the Bochum fit at kT = 10 GeV to the value at
kT = 5 GeV is about 0.65. This is roughly consistent
with the 1/kT fall-off at large kT that is expected from
the power counting arguments in Sec. III C. The last two
columns in Table I show the values of kT where the ra-
tio of the Gaussian fits to the original Sivers functions
is 0.8. That is, above kTorinoT,max (GeV) the Gaussian fits to
the evolved Torino Sivers function drop to less than 0.8
of the original evolved Sivers function and similarly for
kBochum
T,max .

That the description at small kT remains Gaussian is
not entirely surprising given that the input we use for
the nonperturbative evolution is Gaussian (gK(bT ) ∝ b2).
However, it should be emphasized that the perturbative
contribution to evolution results in a substantial modifi-
cation of the shape and normalization of the TMD PDF,

TMD evolution of up quark Sivers function 
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FIG. 3: (Color online.) The evolving Gaussian parameters for −2πk3
TF

⊥up
1T (x, kT ;µ,Q) for a range of Q obtained from the

Torino and Bochum fits. Table I lists the Gaussian parameters for a selection of Q.

tant difference from the unpolarized case is in the match-
ing at large-kT . In the unpolarized case, the TMD PDF
(or FF) matches to a twist-2 collinear factorization treat-
ment at large kT , whereas the Sivers function matches
to a twist-3 collinear factorization treatment related to
the Qiu-Sterman formalism, as in Eq. (47). Thus, the
treatment provided in this article unifies several different
aspects of TMD physics.

It is worth commenting on the often repeated state-
ment (see, e.g., Ref. [51]) that calculations in covariant
gauges are impractical or inconvenient, and that working
in light-cone gauge is therefore preferred. In our work,
we find that the opposite is true. Namely, the calculation
of the perturbative parts (at least to order αs) follows
clear-cut steps in Feynman gauge, while the derivation
of TMD-factorization theorems is much more direct in
Feynman gauge than in light-cone gauge. (Indeed, we
are not aware of the existence of a detailed light-cone
gauge derivation of TMD factorization.) Moreover, once
the calculation of the perturbative parts has been per-
formed in Feynman gauge, a generalized parton-model in-
terpretation follows directly from the TMD-factorization
formula in Eq. (1). For these reasons, we advocate con-
tinuing to work in Feynman gauge for both calculations
and derivations.

We have implemented the evolution explicitly using
as input the already known γF , γD and γK (supplied
for easy reference in the Appendix, previous fixed-scale
Gaussian fits of the Sivers function at low-Q [14, 15], and
previous fits of the CSS formalism to DY [33]. For the ex-
plicit calculations in the present article, we have focused
only on the low-kT region where we need not be con-
cerned with the treatment of the Qiu-Sterman formalism
at large kT , and the approximations of Sec. V make sense.

The resulting evolved momentum-space Sivers functions
are shown in Fig. 1. Comparing with Fig. 1 of Ref. [22]
for the evolution of the unpolarized TMD PDF, one sees
even more suppression as Q is increased than in the un-
polarized case. Also note that a significant perturbative
tail is generated at large Q as shown in Fig. 2. We reem-
phasize that this should be kept in mind when evaluating
integrals like Eq. (52).

Gaussian parametrizations are particularly convenient
for doing explicit calculations. Therefore, we have tested
the quality of Gaussian fits after evolution to large Q
and find that the Gaussian function provides an excellent
approximation to the Sivers function at small kT , even
for Q ≈ 90.0 GeV. We have made these fits available, as
well as code for generating evolved TMDs at a website
maintained by two of us (Aybat and Rogers) [49].

Much work remains to be done in the effort to connect
a full QCD treatment of TMDs with phenomenology. An
explicit implementation of the matching to the twist-3
Qiu-Sterman formalism is still needed, and will be partic-
ularly important for a correct treatment of kT -weighted
observables in which the extra kT factors enhance the
contribution from the large kT region. The recent work
of Ref. [25] may help. Moreover, as new data become
available for both polarized and unpolarized cross sec-
tions, it will be useful to construct new fits that include
evolution from the beginning. Finally, explicit calcula-
tions, analogous to the ones presented here, need to be
applied to the other TMDs like the Boer-Mulders and
Collins functions.

At large Q, the shape of the distribution is especially
sensitive to the value of bmax, g2 and the functional form
of gK(bT ). Reference [34], for example, finds that a larger
value of bmax is preferred, along with a corresponding

Aybat, Collins, Qiu, Rogers, Phys.Rev. D85 (2012) 034043

TMD evolution of up quark Sivers function 

TMD evolution of Sivers function studied also by 
Echevarria, Idilbi, Kang, Vitev, Phys. Rev. D89 (2014) 074013



more on the Sivers effect, what does it teach us? 
 it induces distortions in the parton distributions 

fq/p,S(x,k?) = fq/p(x, k?) +
1
2
�N

fq/p"(x, k?) S · (p̂⇥ k̂?)

= fq/p(x, k?)� k?
M

f

?q
1T (x, k?) S · (p̂⇥ k̂?)

courtesy of  
A. Bacchetta 

u quark
S = Sŷ

p = pẑ



Sivers function and orbital angular momentum 

Ji’s sum rule

Jq =
1
2

Z 1

0
dxx [Hq(x, 0, 0) + Eq(x, 0, 0)]

forward limit of GPDs

q(x)usual PDF
cannot be 

measured directly



p =
Z 1

0

dx

3
⇥
2E

uv (x, 0, 0)� E

dv (x, 0, 0)� E

sv (x, 0, 0)
⇤

anomalous magnetic moments

(Eqv = Eq � E q̄)



n =
Z 1

0

dx

3
⇥
2E

dv (x, 0, 0)� E

uv (x, 0, 0)� E
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Sivers function and orbital angular momentum 

assume

L(x) = lensing function                        
(unknown, can be computed in models)

parameterize Sivers and lensing functions
fit SIDIS and magnetic moment data

obtain Eq and estimate orbital angular momentum 

results at Q2 = 4 GeV2: Ju ≈ 0.23, Jq≠u ≈ 0

f

?(0)a
1T (x,Q) =

Z
d

2k? b
f

?a
1T (x, k?;Q)

f

?(0)a
1T (x;Q2

L) = �L(x)Ea(x, 0, 0;Q2
L)

Bacchetta, Radici, PRL 107 (2011) 212001



TMDs in Drell-Yan processes              
COMPASS, RHIC, Fermilab, NICA, AFTER...              

p p

Q2 = M2

qT

qL

l+

l–

factorization holds, two scales, M2, and qT << M

d�D�Y =
�

a

fq(x1,k⇤1;Q2)� fq̄(x2,k⇤2;Q2) d�̂qq̄⇥⇤+⇤�

direct product of TMDs,  no fragmentation process
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q = u, ū, d, d̄, s, s̄

By looking at the d4σ/d4q cross section one can 
single out the Sivers effect in D-Y processes     

A
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N ⇥

2
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0 d⇥� [d�⇥ � d�⇤] sin(⇥S � ⇥�)

� 2⇥
0 d⇥� [d�⇥ + d�⇤]

p p
qT

qL
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origin of Sivers effect in DY processes



4

what is done in SIDIS processes, ℓ p↑ → ℓ h X , in the γ∗ − p↑ c.m. frame [5]. To summarize, we shall give estimates
for the quantities:

A
sin(φγ−φS)
N (A↑ B → γ∗X ; xF , M, qT ) = −A

sin(φγ−φS)
N (B A↑ → γ∗X ; −xF , M, qT ) . (14)

The equality holds due to rotational invariance.

III. ESTIMATES FOR FORTHCOMING EXPERIMENTS

In order to give estimates for the Sivers asymmetries in Drell-Yan processes — and test the crucially important
sign change when going from SIDIS to DY — we only need to insert the Sivers functions extracted from the analysis
of SIDIS data into Eq. (13). We use the results obtained in Ref. [1], which adopted a Gaussian factorized form both
for the unpolarized distribution functions:

fq/p(x, k⊥) = fq(x)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ⟨k2
⊥⟩ = 0.25 GeV2 , (15)

and for the Sivers distributions:

∆Nfq/p↑(x, k⊥) = 2Nq(x)h(k⊥) fq/p(x, k⊥) (16)

≡ ∆Nfq/p↑(x)h(k⊥)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ,

where

Nq(x) = Nq xαq (1 − x)βq
(αq + βq)(αq+βq)

α
αq
q β

βq
q

(17)

h(k⊥) =
√

2e
k⊥
M1

e−k2
⊥/M2

1 · (18)

The values of the 11 best fit parameters Nq (q = u, d, s, ū, d̄, s̄), αq (q = u, d, sea), β (same for all q) and M1 can be
found in Table I of Ref. [1], where their uncertainty is also explained in details.

Notice that the above factorized expressions allow, at O(k⊥/M), an analytical integration of the numerator and
denominator of Eq. (13), resulting in

A
sin(φγ−φS)
N (xF , M, qT ) =

∫

dφγ [N(xF , M, qT ,φγ)] sin(φγ − φS)
∫

dφγ [D(xF , M, qT )]
(19)

with (see Eq. (9)):
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(20)

and

D(xF , M, qT ) ≡ 1

2
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+
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Notice that we have defined
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The values of the 11 best fit parameters Nq (q = u, d, s, ū, d̄, s̄), αq (q = u, d, sea), β (same for all q) and M1 can be
found in Table I of Ref. [1], where their uncertainty is also explained in details.

Notice that the above factorized expressions allow, at O(k⊥/M), an analytical integration of the numerator and
denominator of Eq. (13), resulting in

A
sin(φγ−φS)
N (xF , M, qT ) =

∫

dφγ [N(xF , M, qT ,φγ)] sin(φγ − φS)
∫

dφγ [D(xF , M, qT )]
(19)

with (see Eq. (9)):

N(xF , M, qT ,φγ) ≡ d4σ↑

dxF dM2 d2qT
− d4σ↓

dxF dM2 d2qT

=
4 π α2

9 M2 s

∑

q

e2
q

x1 + x2
∆Nfq/A↑(x1) fq̄/B(x2)

√
2e

qT

M1

⟨k2
S⟩2 exp

[

−q2
T /

(

⟨k2
S⟩ + ⟨k2

⊥2⟩
) ]

π [⟨k2
S⟩ + ⟨k2

⊥2⟩]
2 ⟨k2

⊥2⟩
sin(φS − φγ)

(20)

and

D(xF , M, qT ) ≡ 1

2

[

d4σ↑

dxF dM2 d2qT
+

d4σ↓

dxF dM2 d2qT

]

=
d4σunp

dxF dM2 d2qT

=
4 π α2

9 M2 s

∑

q

e2
q

x1 + x2
fq/A(x1) fq̄/B(x2)

exp
[

−q2
T /

(

⟨k2
⊥1⟩ + ⟨k2

⊥2⟩
) ]

π [⟨k2
⊥1⟩ + ⟨k2

⊥2⟩]
· (21)

Notice that we have defined

1

⟨k2
S⟩

=
1

M2
1

+
1

⟨k2
⊥1⟩

(22)

with the simple parameterization of the unpolarized 
and Sivers distributions one has: 

4

what is done in SIDIS processes, ℓ p↑ → ℓ h X , in the γ∗ − p↑ c.m. frame [5]. To summarize, we shall give estimates
for the quantities:

A
sin(φγ−φS)
N (A↑ B → γ∗X ; xF , M, qT ) = −A

sin(φγ−φS)
N (B A↑ → γ∗X ; −xF , M, qT ) . (14)

The equality holds due to rotational invariance.

III. ESTIMATES FOR FORTHCOMING EXPERIMENTS

In order to give estimates for the Sivers asymmetries in Drell-Yan processes — and test the crucially important
sign change when going from SIDIS to DY — we only need to insert the Sivers functions extracted from the analysis
of SIDIS data into Eq. (13). We use the results obtained in Ref. [1], which adopted a Gaussian factorized form both
for the unpolarized distribution functions:

fq/p(x, k⊥) = fq(x)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ⟨k2
⊥⟩ = 0.25 GeV2 , (15)

and for the Sivers distributions:

∆Nfq/p↑(x, k⊥) = 2Nq(x)h(k⊥) fq/p(x, k⊥) (16)

≡ ∆Nfq/p↑(x)h(k⊥)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ,

where

Nq(x) = Nq xαq (1 − x)βq
(αq + βq)(αq+βq)

α
αq
q β

βq
q

(17)

h(k⊥) =
√

2e
k⊥
M1

e−k2
⊥/M2

1 · (18)
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the unpolarized cross section has a simple qT gaussian dependence 

d� ⇠ exp[�q2T /(2 hk2?i)
2⇡ hk2?i

(hk2?1i = hk2?2i)



fit of unpolarized D-Y data, S. Melis 

a different        for each set of datahk2
?i

4

what is done in SIDIS processes, ℓ p↑ → ℓ h X , in the γ∗ − p↑ c.m. frame [5]. To summarize, we shall give estimates
for the quantities:

A
sin(φγ−φS)
N (A↑ B → γ∗X ; xF , M, qT ) = −A

sin(φγ−φS)
N (B A↑ → γ∗X ; −xF , M, qT ) . (14)

The equality holds due to rotational invariance.

III. ESTIMATES FOR FORTHCOMING EXPERIMENTS

In order to give estimates for the Sivers asymmetries in Drell-Yan processes — and test the crucially important
sign change when going from SIDIS to DY — we only need to insert the Sivers functions extracted from the analysis
of SIDIS data into Eq. (13). We use the results obtained in Ref. [1], which adopted a Gaussian factorized form both
for the unpolarized distribution functions:

fq/p(x, k⊥) = fq(x)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ⟨k2
⊥⟩ = 0.25 GeV2 , (15)

and for the Sivers distributions:

∆Nfq/p↑(x, k⊥) = 2Nq(x)h(k⊥) fq/p(x, k⊥) (16)

≡ ∆Nfq/p↑(x)h(k⊥)
1

π⟨k2
⊥⟩

e−k2
⊥/⟨k2

⊥⟩ ,

where

Nq(x) = Nq xαq (1 − x)βq
(αq + βq)(αq+βq)

α
αq
q β

βq
q

(17)

h(k⊥) =
√

2e
k⊥
M1

e−k2
⊥/M2

1 · (18)
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Predictions for AN - no TMD evolution
Sivers functions as extracted  from SIDIS data, with opposite sign 

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, PR D79 (2009) 054010 
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some hints at a sign change of the Sivers function…..

what about the sign change ….?
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FIG. 3. [Color online] The amplitude of the transverse single-spin asymmetry for W± and Z0 boson production measured by
STAR in proton-proton collisions at

√
s = 500 GeV with a recorded luminosity of 25 pb−1. The solid gray band represent the

uncertainty on the KQ [11] model due to the unknown sea quark Sivers function. The crosshatched region indicates the current
uncertainty in the theoretical predictions due to TMD evolution.

A combined fit on W+ and W− asymmetries, AN (yW ),
to the theoretical prediction in the KQ model (no TMD
evolution), shown in Fig. 4, gives a χ2/ndf = 7.4/6 as-
suming a sign-change in the Sivers function (solid line)
and a χ2/ndf = 19.6/6 otherwise (dashed line). The cur-
rent data thus favor theoretical models that include a
change of sign for the Sivers function relative to observa-
tions in SIDIS measurements, if TMD evolution effects
are small.
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Figure 3. Our estimates of the Sivers asymmetry AN for W+ (a) and W

� (b) production, assuming
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+ and W

� production, assuming a
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yW is integrated in the region [�1, 1].

of AN , Fig. 4, and the yZ dependence of AN for Z

0, Fig. 5. In the latter case there
is only one single data point, with a big error, indicating a large positive asymmetry.

• The data on the yW dependence are given by collecting all W ’s produced with qT

up to 10 GeV. The simple model of D-Y TMD factorisation without evolution that
we use in this analysis is expected to hold for lower values of qT ; integrating the
theoretical results up to such values, in order to compare with the available data,
is a somewhat ambiguous procedure. Implementation of the TMD evolution would
not help to make the agreement with the data better in this case, as TMD evolution
predicts a suppression of the asymmetries for higher values of Q2 with respect to the
initial lower scale [11]. This suppression might become moderate depending on the
shape of the non-perturbative input of TMD evolution [28–30].
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model, indeed the values of �2 are greater than zero. Using our results from Fig. 5 we may conclude that indeed W±

data provides an indication of the sign change according to Eq. (1).
Another interesting question that we would like to investigate in this paper is whether W± has any significant

impact on parameters of the model. Notice that we do not include W± data in our fit. Bayes theorem allows to
incorporate information from new data by applying re-weighting of probability densities for model parameters. The
details of application of re-weighting are explained in Ref. [27]. Probability density function for model parameters ,
P(↵), is going to be modified in presence of new data and the Bayes theorem states that
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where P(↵|D) is the so-called posterior density, is the updated pdf from the prior density P(↵). The quantity P(D|↵)
called the likelihood function, represents the conditional probability for a data set D given the parameters ↵ of the
model. The quantity P(D) ensures the normalization of the posterior density to unity.
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• Considering the qT integrated data, from a first look at Fig. 3 it appears that indeed
W

� data are compatible with the sign change, while W

+ data may be compatible
with either sign of the Sivers functions.

• The shape of the TMDs and the values of the parameters here adopted allow a good
description of the SIDIS data; however, they are still rather flexible, and our numerical
estimates for the D-Y asymmetry might depend on the choice, for example, of the
values of the Gaussian width, Eq. (3.3). A full study of combined unpolarised SIDIS,
D-Y and (future) e

+

e

� data is mandatory.

5 Impact of the asymmetries on the extraction of Sivers functions

In this Section we take at face value the RHIC data on AN for W

± production and, in
order to quantify their significance, we calculate the deviation between the data and our
estimates, separately for W

+ and W

�:

�

2

(↵) =

dofX

n=1

✓
[theory]n(↵)� [exp]n

[�exp]n

◆
2

(5.1)

where [theory]n(↵) corresponds to the calculation of the W asymmetry using the phe-
nomenological extraction of the Sivers function performed in this paper, with model pa-
rameters ↵, with and without the sign change of Eq. (1.1); [exp]n are the data for W

+ or
W

� asymmetries and [�exp]n are the corresponding experimental errors. As we explained
in Section 3, in order to estimate the error on the extraction of the Sivers functions, we
generate 2·104 sets of parameters ↵ according to Eq. (3.7). Thus, we calculate 2·104 values
of �

2 using Eq. (5.1) for W

+ and W

�. The histogram of all these values of �

2

/dof are
shown in Fig. 6, where dof = 8 is the number of experimental points in each set for W

±.

– 11 –

STAR Collaboration, PRL 116 (2016) 132301 

First results from RHIC, p"p ! Z0 X

prediction with sign change



First measurement of transverse-spin-dependent azimuthal asymmetries . . . 5

1−10 1−10×2
0.4−

0.2−

0

0.2

0.4

S
ϕ

sin T
A 

COMPASS
proton 2015 data

1−10×3 1

0.4−

0.2−

0

0.2

0.4

0 0.5
0.4−

0.2−

0

0.2

0.4

1 2
0.4−

0.2−

0

0.2

0.4

0.4−

0.2−

0

0.2

0.4

1−10 1−10×2
0.4−

0.2−

0

0.2

0.4) S
ϕ 

−
CS

ϕ
sin

(2
T

A 

1−10×3 1

0.4−

0.2−

0

0.2

0.4

0 0.5
0.4−

0.2−

0

0.2

0.4

1 2
0.4−

0.2−

0

0.2

0.4

0.4−

0.2−

0

0.2

0.4

1−10 1−10×2

0.4−

0.2−

0

0.2

0.4) S
ϕ 

+
CS
ϕ

sin
(2

T
A 

Nx
1−10×3 1

0.4−

0.2−

0

0.2

0.4

πx
0 0.5

0.4−

0.2−

0

0.2

0.4

Fx
1 2

0.4−

0.2−

0

0.2

0.4

 (GeV/c)
T

q

0.4−

0.2−

0

0.2

0.4

integrated

Fig. 5: Extracted Drell-Yan TSAs related to Sivers, transversity and pretzelosity TMD PDFs (top to
bottom). Error bars represent statistical uncertainties. Systematic uncertainties (not shown) are 0.7 times
the statistical ones.
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Fig. 6: The measured mean Sivers asymmetry and the theoretical predictions for different Q

2 evolution
schemes from Refs. [19] (DGLAP), [20] (TMD1) and [21] (TMD2). The dark-shaded (light-shaded)
predictions are evaluated with (without) the sign-change hypothesis. The error bar represents the total
experimental uncertainty.

values from this measurement is available on HepData [37]. The last column in Fig. 5 shows the results
for the three extracted TSAs integrated over the entire kinematic range. The average Sivers asymmetry
A

sinj
S

T

is found to be above zero at about one standard deviation of the total uncertainty. In Fig. 6, it
is compared with recent theoretical predictions from Refs. [19, 20, 21] that are based on different Q

2-
evolution approaches. The positive sign of these theoretical predictions for the DY Sivers asymmetry was
obtained by using the sign-change hypothesis for the Sivers TMD PDFs, and the numerical values are
based on a fit of SIDIS data for the Sivers TSA [9, 11, 12]. The figure shows that this first measurement
of the DY Sivers asymmetry is consistent with the predicted change of sign for the Sivers function.

The average value for the TSA A

sin(2j
CS

�j
S

)
T

is measured to be below zero with a significance of about
two standard deviations. The obtained magnitude of the asymmetry is in agreement with the model
calculations of Ref. [38] and can be used to study the universality of the nucleon transversity function.
The TSA A

sin(2j
CS

+j
S

)
T

, which is related to the nucleon pretzelosity TMD PDFs, is measured to be above
zero with a significance of about one standard deviation. Since both A

sin(2j
CS

�j
S

)
T

and A

sin(2j
CS

+j
S

)
T

are
related to the pion Boer-Mulders PDFs, the obtained results may be used to study this function further and
to possibly determine its sign. They may also be used to test the sign change of the nucleon Boer-Mulders
TMD PDFs between SIDIS and DY as predicted by QCD [6, 7, 8], when combined with other past and
future SIDIS and DY data related to target-spin-independent Boer-Mulders asymmetries [39, 40, 41].

Sivers asymmetry in DY at COMPASS  
arXiv:1704.00488
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order, as [17, 18]:
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Z
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2k?1 d
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2(k?1 + k?2 � qT ) fq̄/h1
(x1, k?1) fq/h2

(x2, k?2) (3)

where the
P

q runs over all relevant quarks and antiquarks and we have adopted the usual variables:

q = (q0, qT , qL) q

2 = M

2
y =

1

2
ln

q0 + qL

q0 � qL
s = (p1 + p2)

2 · (4)

The fq/h(x, k?) are the unpolarized TMD-PDFs and e

2
q �̂0 is the cross section for the q q̄ ! `

+
`

� process:
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2
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9M2
· (5)

k?1 and k?1 are the parton transverse momenta, while the parton longitudinal momentum fractions are given by

x1,2 =
Mp
s

e

±y
, so that xF =

2 qLp
s
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Eq. (3) holds in the kinematical region:

q

2
T ⌧ M

2
k? ' qT . (7)

In the case in which one of the hadrons, say h

"
2, is polarized, Eq. (3) simply modifies by replacing fq/h2

(x2, k?2)

with f̂q/h"
2
(x2,k?2) as given in Eq. (1). We then have the Sivers single transverse spin asymmetry:
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We propose to use Eq. (11) for lepton pair production at COMPASS, ⇡±
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X, at the J/ peak, M2 = M
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J/ .

There are several reasons which make this channel very interesting and promising.

1) At COMPASS energy one has x1 x2 = M

2
J/ /s ' 0.027. Due to this relation both x1 and x2 must be greater

than 0.027 and one of them must be greater than
p
0.027 ' 0.16. At small values of xF or y one has approximately

x1 ' x2 ' 0.16. It is then reasonable to expect that the main channel for the J/ production is indeed q q̄ annihilation
(rather than gluon fusion).

2) The COMPASS data which have been taken in 2015 and are being analysed refer to the ⇡
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" ! `

+
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X process

at
p
s = 18.9 GeV. Their interesting feature is that the dominant contribution to the asymmetry (11) is given by a

ū quark from the ⇡

� and a u quark from the proton, both of them valence quarks. All other contributions would
always involve a sea quark and, in the central rapidity region, are strongly suppressed.
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at
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s = 18.9 GeV. Their interesting feature is that the dominant contribution to the asymmetry (11) is given by a

ū quark from the ⇡

� and a u quark from the proton, both of them valence quarks. All other contributions would
always involve a sea quark and, in the central rapidity region, are strongly suppressed.
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3) Other production mechanisms of J/ might contribute, like gluon fusion. However, while they might enhance
the unpolarized cross section, the denominator of AV

N , it is very unlikely that they significantly a↵ect the numerator
of AV

N ; in fact the gluon Sivers function is expected to be small, if not zero [19]. Thus, such contributions might
decrease the value of AV

N , but they cannot alter the conclusion that it mainly originates from the valence quark Sivers
functions.
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Notice that the variables x1 and x2 are related to each other and one can use only one of them or the variable xF or
y, Eq. (6) with M

2 = M
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Eqs. (12) and (13) can be further evaluated, adopting, as usual, a Gaussian factorized form both for the unpolarized
distribution and the Sivers functions, as in Ref. [9]:
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where the fq(x) are the unpolarized PDFs, M1 is a parameter which allows the k? Gaussian dependence of the Sivers
function to be di↵erent from that of the unpolarized TMDs and Nq(x) is a function which parameterises the factorized
x dependence of the Sivers function. In such a case the k? integrations can be performed analytically in Eqs. (12)
and (13), obtaining:

A

J/ 
N (⇡�;x2, qT ) =

hk2Si2

[hk2Si+ hk2?i]2
exp

"
� q

2
T

2 hk2?i

 
hk2?i � hk2Si
hk2?i+ hk2Si

!#p
2 e qT
M1

⇥ 2Nu(x2) S · (p̂2 ⇥ q̂T ) (17)

⌘ A

J/ 
N (⇡�;x2, qT ) S · (p̂2 ⇥ q̂T ) (18)

and

A

J/ 
N (⇡+;x2, qT ) =

hk2Si2

[hk2Si+ hk2?i]2
exp

"
� q

2
T

2 hk2?i

 
hk2?i � hk2Si
hk2?i+ hk2Si

!#p
2 e qT
M1

⇥ 2Nd(x2) S · (p̂2 ⇥ q̂T ) (19)

⌘ A

J/ 
N (⇡+;x2, qT ) S · (p̂2 ⇥ q̂T ) (20)

where

hk2Si =
M

2
1 hk2?i

M

2
1 + hk2?i

· (21)

A

J/ 
N (⇡±;x2, qT ) is the amplitude of the azimuthal modulation in the angle defined by S · (p̂2 ⇥ q̂T ). For example,

taking the proton moving in the �ẑ direction and S ⌘" along +ŷ, in the ⇡ � p c.m. frame, one has S · (p̂2 ⇥ q̂T ) =
� cos�, where � is the azimuthal angle of the J/ .
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N (⇡+;x1, x2, qT ) '

R
d

2k?1 d
2k?2 �

2(k?1 + k?2 � qT ) S · (p̂2 ⇥ k̂?2) fd̄/⇡+(x1, k?1)�N
fd/p"(x2, k?2)

2
R
d

2k?1 d
2k?2 �

2(k?1 + k?2 � qT ) fd̄/⇡+(x1, k?1) fd/p(x2, k?2)
· (13)

Notice that the variables x1 and x2 are related to each other and one can use only one of them or the variable xF or
y, Eq. (6) with M

2 = M

2
J/ .

Eqs. (12) and (13) can be further evaluated, adopting, as usual, a Gaussian factorized form both for the unpolarized
distribution and the Sivers functions, as in Ref. [9]:

fq/p(x, k?) = fq(x)
1

⇡hk2?i
e

�k2
?/hk2

?i (14)

�N
fq/p"(x, k?) = 2Nq(x)h(k?) fq/p(x, k?) (15)

h(k?) =
p
2e

k?
M1

e

�k2
?/M2

1
, (16)

where the fq(x) are the unpolarized PDFs, M1 is a parameter which allows the k? Gaussian dependence of the Sivers
function to be di↵erent from that of the unpolarized TMDs and Nq(x) is a function which parameterises the factorized
x dependence of the Sivers function. In such a case the k? integrations can be performed analytically in Eqs. (12)
and (13), obtaining:

A

J/ 
N (⇡�;x2, qT ) =

hk2Si2

[hk2Si+ hk2?i]2
exp

"
� q

2
T

2 hk2?i

 
hk2?i � hk2Si
hk2?i+ hk2Si

!#p
2 e qT
M1

⇥ 2Nu(x2) S · (p̂2 ⇥ q̂T ) (17)

⌘ A

J/ 
N (⇡�;x2, qT ) S · (p̂2 ⇥ q̂T ) (18)

and

A

J/ 
N (⇡+;x2, qT ) =

hk2Si2

[hk2Si+ hk2?i]2
exp

"
� q

2
T

2 hk2?i

 
hk2?i � hk2Si
hk2?i+ hk2Si

!#p
2 e qT
M1

⇥ 2Nd(x2) S · (p̂2 ⇥ q̂T ) (19)

⌘ A

J/ 
N (⇡+;x2, qT ) S · (p̂2 ⇥ q̂T ) (20)

where

hk2Si =
M

2
1 hk2?i

M

2
1 + hk2?i

· (21)

A

J/ 
N (⇡±;x2, qT ) is the amplitude of the azimuthal modulation in the angle defined by S · (p̂2 ⇥ q̂T ). For example,

taking the proton moving in the �ẑ direction and S ⌘" along +ŷ, in the ⇡ � p c.m. frame, one has S · (p̂2 ⇥ q̂T ) =
� cos�, where � is the azimuthal angle of the J/ .

Measurements of AJ/ 
N (⇡�;x2, qT ) and A

J/ 
N (⇡+;x2, qT ) give a direct access, respectively, to Nu(x2) and Nd(x2),

and the corresponding Sivers functions, Eq. (15). We conclude with an estimate of these two quantities based

on the Sivers functions extracted from SIDIS data. All quantities necessary to compute A

J/ 
N (⇡�;x2, qT ) and

A

J/ 
N (⇡+;x2, qT ) can be found in Ref. [11] (Eq. (40) and third column of Table III), taking into account only the

valence quark contributions. As the Sivers e↵ect is expected to be process dependent and contribute with di↵erent
signs to asymmetries in D-Y and SIDIS processes, the Sivers functions of Ref. [11] are used here with an opposite sign.
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FIG. 1: Plots of AJ/ 
N (⇡�;x2, qT ) (left) and A

J/ 
N (⇡+;x2, qT ) (right) versus xF , for three di↵erent values of qT . These estimates

are obtained according to Eqs. (17)–(20) of the text, using the parameters of Ref. [11], with a sign change for the Sivers functions.
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FIG. 2: Plots of AJ/ 
N (⇡�;x2, qT ) (left) and A

J/ 
N (⇡+;x2, qT ) (right) versus qT , for two di↵erent values of xF . These estimates

are obtained according to Eqs. (17)–(20) of the text, using the parameters of Ref. [11], with a sign change for the Sivers
functions.

In Fig. 1 we plot AJ/ 
N (⇡�;x2, qT ) (left plot) and A

J/ 
N (⇡+;x2, qT ) (right plot), for di↵erent values of qT , as functions

of xF in the expected kinematical region of the COMPASS experiment. Similarly, in Fig. 2 we plot the asymmetries,
for di↵erent values of xF , versus qT .

In both cases the Sivers asymmetries are large, with a well defined sign, driven by the sign of the Sivers functions

of the proton valence quarks, u quark for A

J/ 
N (⇡�) and d quark for A

J/ 
N (⇡+). We consider these large values as

a definite indication of the sign of the Sivers functions. Taking into account the uncertainty bands of the Sivers

functions in Ref. [11] would change the expected magnitudes of AJ/ 
N (⇡�) and A

J/ 
N (⇡+), but not their signs. Notice

that, in order to obtain better statistics, one could gather data over the full range of qT for which Eq. (7) holds; then
the asymmetries are given by Eqs. (12) and (13) with numerator and denominator integrated over qT from 0 to, say,
1 GeV/c.

In conclusion, we propose a simple measurement of the single transverse spin asymmetry AN in the channel
⇡

±
p

" ! J/ X ! `

+
`

�
X, for which abundant data have been already collected by the COMPASS Collaboration.

Due to the kinematical feature of the experiment, the asymmetry is mainly generated by the Sivers distribution
of unpolarized valence quarks inside the polarized proton and its sign reveals the sign of the corresponding Sivers
function. Thus, the longstanding debate about the opposite sign of the Sivers function in SIDIS and Drell-Yan
processes can be unambiguously solved.

M.A. and M.B. acknowledge support from the “Progetto di Ricerca Ateneo/CSP” (codice TO-Call3-2012-0103).
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J/ 
N (⇡+). We consider these large values as

a definite indication of the sign of the Sivers functions. Taking into account the uncertainty bands of the Sivers
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N (⇡+), but not their signs. Notice

that, in order to obtain better statistics, one could gather data over the full range of qT for which Eq. (7) holds; then
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X, for which abundant data have been already collected by the COMPASS Collaboration.
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of unpolarized valence quarks inside the polarized proton and its sign reveals the sign of the corresponding Sivers
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large asymmetries, worth measuring
predictions with SIDIS extracted Sivers functions, with sign change



about the Sivers effect: 

it deeply probes the internal momentum structure of 
the nucleon; it is experimentally well established with 

first extraction of the Sivers function …

it must be related to (valence) parton orbital motion …

it might be related to QCD gauge links and our 
current understanding of TMD factorization …

it is crucial to test its sign change and its universality 

Thank you !


