Transverse Spin and TMDs

Jian-ping Chen (陈剑平), Jefferson Lab, Virginia, USA ECT* Dilepton Workshop, Nov. 6-10, 2017

- Introduction
- Spin, Transverse Spin (Transversity), Tensor Charge
- TMDs: Confined Parton Motion in 3D Momentum Space
 Orbital Motion and Orbital Angular Momentum
- Current Status and Future Perspectives
- Summary

Introduction

Nucleon Structure and Strong Interaction (QCD)

Successes of the Standard Model

- EW tested to high precision
- LHC: Higgs found no evidence of BSM so far!
- QCD tested at high energy

perturbative region pQCD works over a large range for many channels

Last Frontier in SM: QCD in Nonperturbative Region

- 2004 Nobel prize for ``asymptotic freedom''
- Non-perturbative regime QCD
 Confinement ← → dynamical
 chiral symmetry breaking?
- Nature's only known truly nonperturbative fundamental theory
- One of the top 10 challenges for physics!
- QCD: Important for discovering new physics beyond SM
- QCD vacuum
- Nucleon: stable lab to study QCD

running coupling "constant"

Nucleon Structure Study: Blind Men Touch Elephant

- With the complexity of nonperturbative QCD, nucleon structure study is very challenging
- Precise 1d unpolarized PDF not enough
- 1d spin shows surprise
- precision 3d (or multi-d) structure measurement needed
- But even that, it's not enough
 - → Need to ask good questions
 - → Need good theory guidance

Turn on LIGHTS

Nucleon Structure: A Universe Inside

- Nucleon: proton =(uud), neutron=(udd) + sea quarks + gluons (QCD vacuum)
- Nucleon: 99% of the visible mass in universe
 - Proton mass "puzzle":

Quarks carry $\sim 1\%$? of proton's mass

How does glue dynamics generate the energy for nucleon mass?

Proton spin "puzzle":

Quarks carry $\sim 30\%$ of proton's spin

How does quark and gluon dynamics generate the rest of the proton spin?

> 3D structure of nucleon: 3D in momentum or (2D space +1 in momentum)

How does the glue bind quarks and itself into a proton and nuclei? Can we scan the nucleon to reveal its 3D structure?

Nucleon Landscape (Tomography)

- Transverse Momentum Dist. (TMD)
 - Confined motion in a nucleon (semi-inclusive DIS, Drell-Yan)
- Generalized Parton Dist. (GPD)
 - Spatial imaging (exclusive DIS)
- Requires
 - High luminosity
 - Polarized beams and targets
 - Sophisticated detector systems

Major new capability with JLab @ 12 GeV COMPASS, J-PARC, ... and EIC ...

Leading-Twist TMD PDFs

	Quark polarization			
	Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)	
-	f_1		h_1^{\perp} \bullet \bullet Boer-Mulders	
L		g ₁ Helicity	h_{1L}^{\perp} Cong-Transversity	
Т	f_{1T}^{\perp} \bullet - \bullet Sivers	g _{1T} - Trans-Helicity	h_1 Transversity h_{1T}^{\perp} Pretzelosity	
	U	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Unpolarized (U) Longitudinally Polarized (L) g_1 Helicity f_{1T}^{\perp} g_{1T}	

Access TMDs through Hard Processes

- Partonic scattering amplitude
- Fragmentation amplitude
- Distribution amplitude

$$f_{1T}^{\perp q}(\text{SIDIS}) = -f_{1T}^{\perp q}(\text{DY})$$

Valence Quark Distributions: d/u@ High-x

Tool: Semi-inclusive DIS (SIDIS)

12 GeV Upgrade Project

12 GeV Scientific Capabilities

Hall B – understanding nucleon structure via generalized parton distributions

Hall A – form factors, future new experiments (e.g., SoLID and MOLLER)

Hall D – exploring origin of confinement by studying exotic mesons

Hall C – precision determination of valence quark properties in nucleons/nuclei

Why SoLID

- JLab 6 GeV: precision measurements
 high luminosity (10³⁹) but small acceptance (HRS/HMS: < 10 msr)
 - or large acceptance but low luminosity (CLAS6: 10³⁴)
- JLab 12 GeV upgrade opens up a window of opportunities (DIS, SIDIS, Deep Exclusive Processes) to study valence quark (3-d) structure of the nucleon and other high impact physics (PVDIS, J/ψ , ...)
- High precision in multi-dimension or rare processes requires very high statistics → large acceptance and high luminosity
- CLAS12: luminosity upgrade (one order of magnitude) to 10³⁵
- To fully exploit the potential of 12 GeV, taking advantage of the latest technical (detectors, DAQ, simulations,...) development
 - **→** SoLID: large acceptance detector can handle 10³⁷ luminosity (no baffles)

 10^{39}

with baffles

Overview of SoLID

Solenoidal Large Intensity Device

- Full exploitation of JLab 12 GeV Upgrade
 - \rightarrow A Large Acceptance Detector AND Can Handle High Luminosity (10^{37} - 10^{39})
 Take advantage of latest development in detectors, data acquisitions and simulations Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ ψ
- •5 highly rated experiments approved
 Three SIDIS experiments, one PVDIS, one J/ψ production (+ 3 run group experiments)
- •Strong collaboration (250+ collaborators from 70+ institutes, 13 countries)
 Significant international contributions (Chinese collaboration)

SoLID-Spin: SIDIS on ³He/Proton (a) 11 GeV

E12-10-006: Single Spin Asymmetry on Transverse ³He, rating A

E12-11-007: Single and Double Spin Asymmetries on ³He, rating A

E12-11-108: Single and Double Spin Asymmetries on Transverse Proton, rating A

Key of SoLID-Spin program:

Large Acceptance

- + High Luminosity
 - → 4-D mapping of asymmetries
- → Tensor charge, TMDs ...
- → Lattice QCD, QCD Dynamics, Models.

Transverse Spin and 3-D Structure

Transverse Momentum-Dependent Distributions

Separation of Collins, Sivers and pretzelocity effects through angular dependence

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$

$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

$$A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp}$$

$$A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$$

$$A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$$

HERMES/COMPASS: Collin Asymmetries and Extraction of Transversity

Z. Kang, *et al.* arXiv:1505.05589 (2015)

³He (n) Target Single-Spin Asymmetry in SIDIS

E06-010 collaboration, X. Qian at al., PRL 107:072003(2011)

$$n^{\uparrow}(e,e'h), h = \pi^+, \pi^-$$

neutron Collins SSA small Non-zero at highest x for π +

neutron Sivers SSA: negative for π^{+} , Agree with Torino Fit

Blue band: model (fitting) uncertainties **Red band**: other systematic uncertainties

Transversity from SoLID

- Collins Asymmetries ~ Transversity (x) Collin Function
- Transversity: chiral-odd, not couple to gluons, valence behavior, largely unknown
- Global model fits to experiments (SIDIS and e+e-)
- SoLID with trans polarized n & p → Precision extraction of u/d quark transversity
- Collaborating with theory group (N. Sato, A. Prokudin, ...) on impact study

Collins Asymmetries

 P_T vs. x for one (Q^2, z) bin Total > 1400 data points

Z. Ye et al., PLB 767, 91 (2017)

Tensor Charge from SoLID

- Tensor charge (0th moment of transversity): fundamental property Lattice QCD, Bound-State QCD (Dyson-Schwinger), ...
- **SoLID** with **trans polarized n & p** \rightarrow determination of tensor charge

DSE

LQCD

Extractions from existing data

SoLID projections

Projections with a model QCD evolutions included

Tensor Charge and Neutron EDM

Electric Dipole Moment

Tensor charge and EDM

$$d_n = \delta_T u \, d_u + \delta_T d \, d_d + \delta_T s \, d_s$$

current neutron EDM limit

$$|d_n| < 2.9 \times 10^{-26} \, e \cdot \text{cm}$$

Mapping Sivers Asymmetries with SoLID

- Sivers Asymmetries \sim Sivers Function (x, k_T, Q^2) (x) Fragmentation Function (z, p_T, Q^2)
- Gauge Link/ QCD Final State Interaction
- Transverse Imaging
- QCD evolutions
- SoLID: precision multi-d mapping
- Collaborating with theory group: impact study with new approach

Sivers Asymmetries

 P_T vs. x for one (Q^2, z) bin Total > 1400 data points

What do we learn from 3D distributions?

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

The slice is at:

$$x = 0.1$$

Low-x and high-x region is uncertain
JLab 12 and EIC will contribute

No information on sea quarks

In future we will obtain much clearer picture

Unpolarized TMD: Flavor P_T Dependence?

Flavor in transverse-momentum space

Is the up distribution wider or narrower than the down?

And the sea?

How wide are the distributions?

A. Bacchetta, Seminar @ JLab, JHEP 1311 (2013) 194

Flavor P_T Dependence from Theory

■Chiral quark-soliton model (Schweitzer, Strikman, Weiss, JHEP, 1301 (2013) **→** sea wider tail than valanee

Indications from lattice QCD

Musch, Hagler, Negele, Schafer, PRD 83 (11)

Pioneering lattice-QCD studies hint at a down distribution being wider than up

•Flagmentation model, Matevosyan, Bentz, Cloet, Thomas, PRD85 (2012)

→ unfavored pion and Kaon wider than favored pion

Hall C Results: Flavor P_T Dependence

First indications from experiments

no kaons, no sea, no *X-Z* dependence

Conclusion: up is wider than down and favored wider than unfavored

Hall A SIDIS Cross Section Results From E06-010 (Transversity):

pi+ and pi- production on He3

X. Yan *et al.*, Hall A Collaboration, PRC 95, 035209 (2017) (not enough sensitivity to Boer-Mulders)

Hall A Results: Transverse Momentum dependence

average quark transverse momentum distribution squared vs. average quark transverse momentum in fragmentation squared

with modulation

0.04 0.02 [GeV²] **⊋** 0.04 0.02 -0.020.205 0.21 0.215 0.22 $\langle p_I^2 \rangle \, [\text{GeV}^2]$

no modulation

TMDs and Orbital Angular Momentum

Pretzelosity ($\Delta L=2$), Worm-Gear ($\Delta L=1$), Sivers: Related to GPD E through Lensing Function

Quark Orbital Angular Momentum

Nucleon spin
$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \frac{1}{2} \Delta \Sigma + \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \frac{1}{2} \Delta$$

X. Chen et al. suggested a new one: decompose gauge field into pure and physical

- Spin Puzzle: missing piece, orbital angular momentum (OAM)
- Indirect evidence → OAM is significant
- Lattice Calculation
- Ji's sum rule:

$$J_{q,g} = \frac{1}{2} \int dx x \left(H_{q,g}(x,0,0) + E_{q,g}(x,0,0) \right) ,$$

measure GPDs to access the total angular momentum needs GPD E (and H) be measured in all x at fixed ξ DVCS only access GPDs @ $x=\xi$ ridge experimentally difficult to measure GDPs at all x with fixed ξ , if not impossible DDVCS?

OAM and Parton Distributions

How best to access/measure quark orbital angular momentum?
 Extensively discussed in the last decade or so

X. Ji, et al., arXiv:1202.2843; 1207.5221

"Thus a partonic picture of the orbital contribution to the nucleon helicity necessarily involves parton's transverse momentum. In other words, TMD parton distributions are the right objects for physical measurements and interpretation."

- Transversely polarized nucleon: $J_q = \frac{1}{2} \sum_i \int dx x \left[q_i(x) + E_i(x, 0, 0) \right] ,$
- Longitudinally polarized nucleon: related to Twist-3 GPDs (more difficult?)
- Intuitive definition: L= r x p → can be defined in Wigner Distributions

$$L(x) = \int (\vec{b}_{\perp} \times \vec{k}_{\perp}) W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) d^2 \vec{b}_{\perp} d^2 \vec{k}_{\perp} ,$$

access through both TMDs and GPDs

- Parton spin-orbital correlations → transverse momentum TMDs provide more direct information
- TMD information related to \$\mu_q \cdot ?

TMDs: Access Quark Orbital Angular Momentum

- TMDs: Correlations of transverse motion with quark spin and orbital motion
- Without OAM, off-diagonal TMDs=0,
 no direct model-independent relation to the OAM in spin sum rule yet
- Sivers Function: QCD lensing effects
- In a large class of models, such as light-cone quark models

Pretzelosity: $\Delta L=2$ (L=0 and L=2 interference, L=1 and -1 interference)

Worm-Gear: $\Delta L=1$ (L=0 and L=1 interference)

Solid with trans polarized n/p → quantitative knowledge of OAM

SoLID Projections Pretzelosity

Asymmetry A_{LT} Result

E06-010 Collaboration, J. Huang et al., PRL. 108, 052001 (2012).

To leading twist:

$$A_{\mathrm{LT}}^{\cos(\phi_h - \phi_s)} \propto F_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$$

Dominated by L=0 (S) and L=1 (P) interference

- neutron A_{LT} : Positive for π -
- Consist w/ model in signs, suggest larger asymmetry

Worm-Gear Trans helicity

\sqrt{q}	U	L	Т
$\mid \mathbf{u} \mid$	\mathbf{f}_1		\mathbf{h}_1^\perp
L		\mathbf{g}_1	$\mathbf{h}_{1\mathbf{L}}^{\perp}$
$\mid _{f T} \mid$	$\mathbf{f}_{\mathbf{lT}}^{\perp}$	g _{1T}	$\mathbf{h}_1 \; \mathbf{h}_{1T}^{\perp}$

Worm-gear Functions

- Dominated by real part of interference between L=0 (S) and L=1 (P) states
- No GPD correspondence
- Exploratory lattice QCD calculation:

Ph. Hägler et al, EPL 88, 61001 (2009)

Light-Cone CQM by B. Pasquini B.P., Cazzaniga, Boffi, PRD78, 2008

Neutron Projections,

$$A_{LT} \sim g_{1T}(x)D_1(z)$$

Wigner distribution: Is it measurable?

In quantum optics, yes!

VOLUME 70, NUMBER 9

PHYSICAL REVIEW LETTERS

1 MARCH 1993

Measurement of the Wigner Distribution and the Density Matrix of a Light Mode Using Optical Homodyne Tomography: Application to Squeezed States and the Vacuum

D. T. Smithey, M. Beck, and M. G. Raymer

Department of Physics and Chemical Physics Institute, U

A. Faridani

Department of Mathematics, Oregon State Uni

(Received 16 November

What about in QCD? Go to small-x!

FIG. 1. Measured Wigner distributions for (a),(b) a squeezed state and (c),(d) a vacuum state, viewed in 3D and as contour plots, with equal numbers of constant-height contours. Squeezing of the noise distribution is clearly seen in (b).

Probing Wigner (GTMD) in diffractive dijet production

YH, Xiao, Yuan (2016)

$$\times \left[\frac{\vec{P}_{\perp}}{P_{\perp}^{2} + \epsilon^{2}} - \frac{\vec{P}_{\perp} - \vec{q}_{\perp}}{(P_{\perp} - q_{\perp})^{2} + \epsilon^{2}} \right] \cdot \left[\frac{\vec{P}_{\perp}}{P_{\perp}^{2} + \epsilon^{2}} - \frac{\vec{P}_{\perp} - \vec{q}_{\perp}'}{(P_{\perp} - q_{\perp}')^{2} + \epsilon^{2}} \right]$$

$$\sim d\sigma_0 + 2\cos 2(\phi_P - \phi_\Delta)d\tilde{\sigma}$$

Summary

TMDs:

transverse imaging QCD dynamics, access quark orbital angular momentum

- Exploratory study from HERMES(p), COMPASS (d,p) and JLab 6 GeV (n)
- SoLID-TMD Program
 multi-dimensional mapping in the valence region with ultimate precision

Transversity/Tensor Charge, Sivers, Other TMDs → Orbital Motion

→ Understanding nucleon 3-d structure, study QCD dynamics, quark orbital angular momentum and more

Detailed information on SoLID: SoLID whitepaper: arXiv:1409.7741; and http://hallaweb.jlab.org/12GeV/SoLID/

EIC will continue the study for sea quarks and gluons

Dilepton Production with e and γ Beams

J/ψ Threshold Production: Proton Mass Puzzle?
TSC and DDVCS: GPDs

Dilepton Production with SoLID

- J/ψ threshold Production QCD Dynamics, Proton Mass, Charm-Pentaquark
- Timelike Compton Scattering (Run-group Proposal)
 Study GPDs, Universality
- Double DVCS (Letter-Of-Intent)
 GPD beyond x=ξ

Proton Mass

Mass Generation

Mass Decomposition

Theoretical Developments

- Dynamical Chiral Symmetry Breaking <-> Confinement
 - \triangleright Responsible for ~99%(?) of the nucleon mass
 - ➤ Higgs mechanism is (almost) irrelevant to light quarks
 - **▶** Understand proton mass (energy structure) can provide clue

Proton Mass Decomposition

- Energy Momentum Tensor, T^{μν}
 - Invariant: $m^2 = E^2 P^2 \sim Trace < pl (T^{\mu\nu})|p>$
 - \triangleright Rest Frame: $m = E \sim \langle p|T^{00}|p \rangle$
- Recent development in theory
 - **Lattice QCD**
 - Bound State QCD: Dyson-Schwinger
 - > Ads/CFT: Holographic QCD
 - **>**

Proton Mass Generation

Decomposition – Sum Rules

Roles of quarks and gluons?

QCD energy-momentum tensor:

$$T^{\mu\nu} = \overline{T^{\mu\nu}} + \widehat{T^{\mu\nu}}$$

Traceless term:
$$\overline{T}$$

Traceless term:
$$\overline{T^{\mu\nu}} \equiv T^{\mu\nu} - \frac{1}{4} g^{\mu\nu} T^{\alpha}_{\ \alpha}$$

$$\widehat{T^{\mu\nu}} \equiv \frac{1}{4} g^{\mu\nu} T^{\alpha}_{\ \alpha}$$
 Vacuum expectation breaks chiral symmetry

$$T^{\mu
u} \equiv \frac{1}{4} g^{\mu
u} T^{lpha}_{\ \ lpha}$$

with
$$T^\alpha_{\ \alpha}=\frac{\beta(g)}{2g}F^{\mu\nu,a}F^a_{\mu\nu}+\sum_{q=u,d,s}m_q(1+\gamma_m)\overline{\psi}_q\psi_q$$
 QCD trace anomaly
$$\beta(g)=-(11-2n_f/3)\,g^3/(4\pi)^2+\dots$$

QCD trace anomaly
$$\ eta(g)=-(11-2n_f/3)\,g^3/(4\pi)^2+..$$

Invariant hadron mass (in any frame):

$$ra{p}T^{\mu
u}\ket{p}\propto p^{\mu}p^{
u}$$

$$\langle p | T^{\mu\nu} | p \rangle \propto p^{\mu} p^{\nu}$$
 \Longrightarrow $\langle p | T^{\mu\nu} | p \rangle (g_{\mu\nu}) \propto p^{\mu} p^{\nu} (g_{\mu\nu}) = m^2$

$$m^2 \propto \langle p|T^{lpha}_{\ lpha}|p
angle \qquad \longrightarrow \qquad rac{eta(g)}{2a} \ \langle p|F^2|p
angle$$

$$\langle p|F^2|p\rangle$$

At the chiral limit, the entire mass is from gluons!

Proton Mass: QCD energy

X. Ji, PRL741071(1995)

 One can calculate the proton mass through the expectation value of the QCD Hamiltonian,

$$H_{\mathrm{QCD}} = H_q + H_m + H_g + H_a$$
 .
$$H_q = \int d^3\vec{x} \; \bar{\psi}(-i\mathbf{D} \cdot \alpha) \psi, \qquad \qquad \text{Quark energy}$$

$$H_m = \int d^3\vec{x} \; \bar{\psi} m \psi, \qquad \qquad \qquad \text{Quark mass}$$

$$H_g = \int d^3\vec{x} \; \frac{1}{2} (\mathbf{E}^2 + \mathbf{B}^2), \qquad \qquad \text{Gluon energy}$$

$$H_a = \int d^3\vec{x} \; \frac{9\alpha_s}{16\pi} (\mathbf{E}^2 - \mathbf{B}^2). \qquad \qquad \text{Trace anomaly (Dark Energy)}$$

Relating to Measurements

- Traceless part at rest frame becomes *quark kinetic energy and gluon energy* can be extracted from parton distribution functions scheme and scale dependent
- Quark mass: u and d quark contribution obtain from pi-nucleon sigma term s quark from Chiral Purturbation Theory for baryon octet or LQCD, ...
- Trace Anomaly: analogous to the cosmological constant (dark energy)!

 J/ψ threshold production may provide access?

SoLID-J/ψ: Study Non-Perturbative Gluons

J/ψ: ideal probe of non-perturbative gluon

The <u>high luminosity & large acceptance</u> capability of SoLID enables a <u>unique</u> "precision" measurement near threshold

- Shed light on the low energy J/ψ -nucleon interaction (color Van der Waals force)
- Shed light on the 'conformal anomaly' an important piece in the proton mass budget:

Models relate J/ψ enhancement to trace anomaly

Backup

SoLID Impact on Pretzelosity

SoLID transversely polarized ³He, E12-10-006.

95% C.L.

Angular Momentum (1)

T. Liu

OAM and pretzelosity:

model dependent

$$L_z = -\int dx \, d^2 \, k_{\perp} \, \frac{k_{\perp}^2}{2 \, M_p^2} \, h_{1 \, T}^{\perp} (x, k_{\perp}^2)$$

J. She et al., PR D 79, 058008 (2009).

SoLID impact:

Angular Momentum

Sivers and GPD *E*:

model dependent

$$f_{1T}^{\perp(0)}(x,Q_0^2) = -L(x)E(x,0,0,Q_0^2)$$

$$L(\mathbf{x}) = \frac{\mathbf{K}}{(1-x)^{\eta}}$$
 lensing function

A. Bacchetta et al., PR L 107, 212001 (2011).

K and η are fixed by anomalous magnetic moments κ^p and κ^n .

$$J = \frac{1}{2} \int dx \, x \, [H(x, 0, 0) + E(x, 0, 0)]$$

SoLID:

