Transverse Spin and TMDs

Jian－ping Chen（陈剑平），Jefferson Lab，Virginia，USA ECT＊Dilepton Workshop，Nov．6－10， 2017

－Introduction
－Spin，Transverse Spin（Transversity），Tensor Charge
－TMDs：Confined Parton Motion in 3D Momentum Space
Orbital Motion and Orbital Angular Momentum
－Current Status and Future Perspectives
－Summary

Introduction

Nucleon Structure and Strong Interaction (QCD)

Successes of the Standard Model

- EW tested to high precision
- LHC: Higgs found no evidence of BSM so far!
- QCD tested at high energy
perturbative region pQCD works over a large range for many channels

Reference

PLB 761 (2016) 158 | Nucl. Phys. B, 486-548 |
| :--- |
| JHEP 02, 153 (2015) | JHEP O2, 153 (2015) arxiv: 1701.06882 he JHEP 06 (2016) 005 PRD 89, 052004 (2014) PLB 759 (2016) 601

JHEP $02(2017) 11$
JHEP $02(2017) 11$

JHEP 02 (2017) 17
PLB 761 (2016) 136

EPJC 74: 3109 (2014)
E.JC 74: 3109 (2014)

PRD 90, 112006 (2014)
aXXiv: 1702.04519 hhep--
PLB 763.114 (2016)
PLB 763, 114 (2016)
JRD 87,112001 (2013)

arXiv:1612.07231 (hhep-ex
JHEP 01,0644 (2016)

JHEP 01, 064 (2016)
PLB 716, 142-159 (2012)
PLB 762 (2016)
PRP 93, 092004 (2016)
PRD 93,092004 (2016)
PJC $72,2173(2012)$
EPJC 72, 2173 (2012)
PRL $116,101801(2016)$
HEP $101099(2017)$
JHEP $03,128(2013)$

Last Frontier in SM: QCD in Nonperturbative Region

- 2004 Nobel prize for `asymptotic freedom"
- Non-perturbative regime QCD Confinement \leftrightarrow dynamical
 chiral symmetry breaking?
- Nature's only known truly nonperturbative fundamental theory
- One of the top 10 challengesfor physics!
- QCD: Important for discovering new physics beyond SM
- QCD vacuum
- Nucleon: stable lab to study QCD
running coupling "constant"

Nucleon Structure Study: Blind Men Touch Elephant

- With the complexity of nonperturbative QCD, nucleon structure study is very challenging
- Precise 1d unpolarized PDF not enough
- 1d spin shows surprise
- precision 3d (or multi-d) structure measurement needed
- But even that, it's not enough \rightarrow Need to ask good questions \rightarrow Need good theory guidance
 Turn on LIGHTS

Nucleon Structure: A Universe Inside

- Nucleon: proton =(uud), neutron=(udd) + sea quarks + gluons (QCD vacuum)
- Nucleon: 99\% of the visible mass in universe
> Proton mass "puzzle":
Quarks carry $\sim 1 \%$? of proton's mass

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{q}} \sim 10 \mathrm{MeV} \\
& \mathrm{~m}_{\mathrm{N}} \sim 1000 \mathrm{MeV}
\end{aligned}
$$

How does glue dynamics generate the energy for nucleon mass?
> Proton spin "puzzle":
Quarks carry $\sim 30 \%$ of proton's spin

How does quark and gluon dynamics generate the rest of the proton spin?
$>$ 3D structure of nucleon: 3D in momentum or (2D space +1 in momentum)

How does the glue bind quarks and itself into a proton and nuclei? Can we scan the nucleon to reveal its 3D structure?

Nucleon Landscape (Tomography)

- Transverse Momentum Dist. (TMD) - Confined motion in a nucleon (semi-inclusive DIS, Drell-Yan)
- Generalized Parton Dist. (GPD)
- Spatial imaging (exclusive DIS)
- Requires
- High luminosity
- Polarized beams and targets
- Sophisticated detector systems

\Rightarrow
Major new
capability with JLab @ 12 GeV
COMPASS, J-PARC, ... and EIC ...

Leading-Twist TMD PDFs
\rightarrow Nucleon Spin
\leftrightarrow Quark Spin

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U	f_{1}		$h_{1}^{\perp} \underset{\text { Boer-Mulders }}{(i)}$
	L		g_{1} Helicity	
	T	$f_{1 \mathrm{~T}^{\perp}}^{\bullet}-$		

Access TMDs through Hard Processes

Valence Quark Distributions: d/u@ High-x

Tool: Semi-inclusive DIS (SIDIS)

12 GeV Upgrade Project

Project Scope (completed):

- Doubling the accelerator beam energy - DONE
- New experimental Hall D and beam line - DONE
- Civil construction including Utilities - ~DONE
- Upgrades to Experimental Halls C - DONE
- Upgrades to Experimental Halls B - DONE

Add 5 cryomodules
-Enhanced capabilities in existing Halls - Increase of Luminosity 10^{35} - $\sim 10^{39} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
TPC ~ \$340M

12 GeV Scientific Capabilities

Hall B - understanding nucleon structure via generalized parton distributions

Hall A - form factors, future new experiments (e.g., SoLID and MOLLER)

Hall D - exploring origin of confinement by studying exotic mesons

Hall C - precision determination of valence quark properties in nucleons/nuclei

Why SolID

- JLab 6 GeV: precision measurements
high luminosity ($\mathbf{1 0}^{39}$) but small acceptance (HRS/HMS: < $10 \mathbf{~ m s r}$)
or large acceptance but low luminosity (CLAS6: 10 ${ }^{34}$)
- JLab 12 GeV upgrade opens up a window of opportunities (DIS, SIDIS, Deep Exclusive Processes) to study valence quark (3-d) structure of the nucleon and other high impact physics (PVDIS, $\mathrm{J} / \psi, \ldots$)
- High precision in multi-dimension or rare processes requires very high statistics \rightarrow large acceptance and high luminosity
- CLAS12: luminosity upgrade (one order of magnitude) to $10{ }^{35}$
- To fully exploit the potential of $12 \mathbf{G e V}$, taking advantage of the latest technical (detectors, DAQ, simulations, ...) development
\rightarrow SoLID: large acceptance detector can handle 10^{37} luminosity (no baffles)

Overview of SoLID

Solenoidal Large Intensity Device

- Full exploitation of JLab 12 GeV Upgrade

\rightarrow A Large Acceptance Detector AND Can Handle High Luminosity ($10^{37}-10^{39}$)
Take advantage of latest development in detectors, data acquisitions and simulations Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ ψ
-5 highly rated experiments approved
Three SIDIS experiments, one PVDIS, one J/ ψ production (+ 3 run group experiments)

- Strong collaboration ($250+$ collaborators from 70+ institutes, 13 countries)

Significant international contributions (Chinese collaboration)

SoLID-Spin: SIDIS on ${ }^{3} \mathrm{He} /$ Proton@ 11 GeV

SoLID (SIDIS \& J/ ψ)

E12-10-006: Single Spin Asymmetry on Transverse ${ }^{3} \mathrm{He}$, rating A E12-11-007: Single and Double Spin Asymmetries on ${ }^{3} \mathrm{He}$, rating A
E12-11-108: Single and Double Spin Asymmetries on Transverse Proton, rating A

Transverse Spin and 3-D Structure

Transverse Momentum-Dependent Distributions

Separation of Collins, Sivers and pretzelocity effects through angular dependence

$$
\begin{aligned}
& A_{U T}\left(\varphi_{h}^{l}, \varphi_{S}^{l}\right)=\frac{1}{P} \frac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}} \\
& =A_{U I}^{\text {Colins }} \sin \left(\phi_{h}+\phi_{S}\right)+A_{U T}^{\text {Sivers }} \sin \left(\phi_{h}-\phi_{S}\right) \\
& +A_{U T}^{\text {Pretzelosity }} \sin \left(3 \phi_{h}-\phi_{S}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A_{U T}^{\text {Colins }} \propto\left\langle\sin \left(\phi_{h}+\phi_{S}\right)\right\rangle_{U T} \propto h_{1} \otimes H_{1}^{\perp} \\
& A_{U T}^{\text {Sivers }} \propto\left\langle\sin \left(\phi_{h}-\phi_{S}\right)\right\rangle_{U T} \propto f_{1 T}^{\perp} \otimes D_{1} \\
& A_{U T}^{\text {Pretzelosity }} \propto\left\langle\sin \left(3 \phi_{h}-\phi_{S}\right)\right\rangle_{U T} \propto h_{1 T}^{\perp} \otimes H_{1}^{\perp}
\end{aligned}
$$

HERMES/COMPASS: Collin Asymmetries

 and Extraction of Transversity

Z. Kang, et al. arXiv:1505.05589 (2015)

${ }^{3} \mathrm{He}$ (n) Target Single-Spin Asymmetry in SIDIS

E06-010 collaboration, X. Qian at al., PRL 107:072003(2011)

$$
\mathrm{n}^{\uparrow}\left(e, e^{\prime} h\right), h=\pi^{+}, \pi^{-}
$$

neutron Collins SSA small Non-zero at highest \mathbf{x} for $\pi+$

neutron Sivers SSA: negative for π^{+},
Agree with Torino Fit

Blue band: model (fitting) uncertainties Red band: other systematic uncertainties

Transversity from SoLID

- Collins Asymmetries ~ Transversity (x) Collin Function
- Transversity: chiral-odd, not couple to gluons, valence behavior, largely unknown
- Global model fits to experiments (SIDIS and e+e-)
- SoLID with trans polarized $\mathbf{n} \& \boldsymbol{p} \rightarrow$ Precision extraction of u / d quark transversity
- Collaborating with theory group (N. Sato, A. Prokudin, ...) on impact study

Collins Asymmetries

P_{T} vs. x for one $\left(Q^{2}, z\right)$ bin Total >1400 data points

Z. Ye et al., PLB 767, 91 (2017)

Tensor Charge from SoLID

- Tensor charge (0th moment of transversity): fundamental property Lattice QCD, Bound-State QCD (Dyson-Schwinger) , ...
- SoLID with trans polarized $\mathbf{n} \& \boldsymbol{p} \rightarrow$ determination of tensor charge

DSE

LQCD

Extractions from existing data

SoLID projections

Projections with a model QCD evolutions included

Tensor Charge and Neutron EDM

Electric Dipole Moment

Tensor charge and EDM

$$
d_{n}=\delta_{T} u d_{u}+\delta_{T} d d_{d}+\delta_{T} s d_{s}
$$

Kang et al. with $\left|d_{n}\right|<2.9 \times 10^{-26} e \cdot \mathrm{~cm}$

SoLID with $\left|d_{n}\right|<2.9 \times 10^{-26} e \cdot \mathrm{~cm}$

SoLID with $\left|d_{n}\right|<2.9 \times 10^{-28} e \cdot \mathrm{~cm}$
current neutron EDM limit $\quad\left|d_{n}\right|<2.9 \times 10^{-26} e \cdot \mathrm{~cm}$

Mapping Sivers Asymmetries with SoLID

- Sivers Asymmetries ~ Sivers Function (x, k_{T}, Q^{2}) (x) Fragmentation Function (z, p_{T}, Q^{2})
- Gauge Link/ QCD Final State Interaction
- Transverse Imaging
- QCD evolutions
- SolID: precision multi-d mapping
- Collaborating with theory group: impact study with new approach

Sivers Asymmetries

P_{T} vs. x for one $\left(Q^{2}, z\right)$ bin
Total >1400 data points

Liu, Sato,... on-going

What do we learn from 3D distributions?

$$
f\left(x, \mathrm{k}_{\mathrm{T}}, \mathrm{~S}_{\mathrm{T}}\right)=f_{1}\left(x, \mathrm{k}_{\mathrm{T}}^{2}\right)-f_{1 T}^{\perp}\left(x, \mathrm{k}_{\mathrm{T}}^{2}\right) \frac{\mathrm{k}_{\mathrm{T} 1}}{M}
$$

The slice is at:
$x=0.1$
Low-x and high-x region is uncertain
JLab 12 and EIC will contribute

No information on sea quarks

In future we will obtain much clearer picture

Unpolarized TMD: Flavor P_{T} Dependence?

Flavor in transverse-momentum space

Is the up distribution wider or narrower than the down?
And the sea?
How wide are the distributions?
A. Bacchetta, Seminar @ JLab, JHEP 1311 (2013) 194

Flavor P_{T} Dependence from Theory

-Chiral quark-soliton model (Schweitzer, Strikman, Weiss, JHEP, 1301 (2013) \rightarrow sea wider tail than valanee

Indications from lattice QCD

Pioneering lattice-QCD studies hint at a down distribution being wider than up
-Flagmentation model, Matevosyan, Bentz, Cloet, Thomas, PRD85 (2012) \rightarrow unfavored pion and Kaon wider than favored pion

Hall C Results: Flavor P_{T} Dependence

First indications from experiments

Asaturyan et al., EOO-108, Hall(C, PRC85 (2012) Jefferson Lab
no kaons, no sea, no $x-z$ dependence

Conclusion: up is wider than down and favored wider than unfavored

Hall A SIDIS Cross Section Results From E06-010 (Transversity):

pi+ and pi- production on He 3
X. Yan et al., Hall A Collaboration, PRC 95, 035209 (2017)
(not enough sensitivity to Boer-Mulders)

Hall A Results: Transverse Momentum dependence

average quark transverse momentum distribution squared vs. average quark transverse momentum in fragmentation squared
with modulation

no modulation

TMDs and Orbital Angular Momentum

Pretzelosity ($\Delta \mathrm{L}=2$), Worm-Gear ($\Delta \mathrm{L}=1$),

 Sivers: Related to GPD E through Lensing Function
Quark Orbital Angular Momentum

Nucleon spin $1 / 2=1 / 2 \Delta \Sigma+\mathrm{L}_{\mathrm{q}}+\mathrm{J}_{\mathrm{g}} \quad \mathrm{Ji}$ (gauge invariant)

$$
=1 / 2 \Delta \Sigma+\mathcal{L}_{q}+\Delta \mathrm{G}+\mathcal{L}_{\mathrm{g}} \quad \text { Jeffe-Manohar (light-cone) }
$$

X. Chen et al. suggested a new one: decompose gauge field into pure and physical

- Spin Puzzle: missing piece, orbital angular momentum (OAM)
- Indirect evidence \rightarrow OAM is significant
- Lattice Calculation
- Ji's sum rule:

$$
J_{q, g}=\frac{1}{2} \int d x x\left(H_{q, g}(x, 0,0)+E_{q, g}(x, 0,0)\right)
$$

measure GPDs to access the total angular momentum needs GPD E (and H) be measured in allx at fixed ξ
DVCS only access GPDs @ $x=\xi$ ridge
experimentally difficult to measure GDPs at all x with fixed ξ, if not impossible DDVCS?

OAM and Parton Distributions

- How best to access/measure quark orbital angular momentum?

Extensively discussed in the last decade or so
X. Ji, et al., arXiv:1202.2843; 1207.5221
"Thus a partonic picture of the orbital contribution to the nucleon helicity necessarily involves parton's transverse momentum. In other words, TMD parton distributions are the right objects for physical measurements and interpretation. "

- Transversely polarized nucleon: $\quad J_{q}=\frac{1}{2} \sum_{i} \int d x x\left[q_{i}(x)+E_{i}(x, 0,0)\right]$,
- Longitudinally polarized nucleon: related to Twist-3 GPDs (more difficult?)
- Intuitive definition: L=rxp \rightarrow can be defined in Wigner Distributions

$$
L(x)=\int\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) W\left(x, \vec{b}_{\perp}, \vec{k}_{\perp}\right) d^{2} \vec{b}_{\perp} d^{2} \vec{k}_{\perp}
$$

access through both TMDs and GPDs

- Parton spin-orbital correlations \rightarrow transverse momentum

TMDs provide more direct information

- TMD information related to \mathcal{L}_{q} ?

TMDs: Access Quark Orbital Angular Momentum

- TMDs : Correlations of transverse motion with quark spin and orbital motion
- Without OAM, off-diagonal TMDs=0,
no direct model-independent relation to the OAM in spin sum rule yet
- Sivers Function: QCD lensing effects
- In a large class of models, such as light-cone quark models

Pretzelosity: $\Delta L=2$ ($L=0$ and $L=2$ interference, $L=1$ and -1 interference)
Worm-Gear: $\Delta \mathrm{L}=1$ ($\mathrm{L}=0$ and $\mathrm{L}=1$ interference)

- SoLID with trans polarized $\mathrm{n} / \mathrm{p} \rightarrow$ quantitative knowledge of OAM

SoLID Projections Pretzelosity

Asymmetry $A_{L T}$ Result

E06-010 Collaboration, J. Huang et al., PRL. 108, 052001 (2012).
To leading twist:

$$
A_{\mathrm{LT}}^{\cos \left(\phi_{h}-\phi_{s}\right)} \propto F_{L T}^{\cos \left(\phi_{h}-\phi_{s}\right)} \propto g_{1 T}^{q} \underset{K}{\otimes} D_{1 q}^{h}
$$

$$
\begin{aligned}
& \text { Worm-Gear } \\
& \text { Trans helicity }
\end{aligned}
$$

Dominated by $L=0(S)$ and $L=1(P)$ interference

- neutron $A_{\text {LT: }}$ Positive for $\pi-$
- Consist w/ model in signs, suggest larger asymmetry

Worm-gear Functions

Ph. Hägler et al, EPL 88, 61001 (2009)

- Dominated by real part of interference between L=0 (S) and L=1 (P) states
- No GPD correspondence
- Exploratory lattice QCD calculation:

Neutron Projections,

$$
A_{U L} \sim h_{1 L}^{\perp}(x) \circledast H_{1}^{\perp}(z)
$$

Wigner distribution: Is it measurable?

In quantum optics, yes!

Measurement of the Wigner Distribution and the Density Matrix of a Light Mode Using Optical Homodyne Tomography: Application to Squeczed States and the Vacuum
D. T. Smithey, M. Beck, and M. G. Raymer

Department of Physics and Chemical Physics Institute, 1 .
A. Faridani

Department of Mathematics, Oregon State Uni
(Received 16 Novembe

What about in QCD? Go to small-x!

FIG. 1. Measured Wigner distributions for (a), (b) a squeezed state and (c), (d) a vacuum statc, viewed in 3D and as contour plots, with equal numbers of constant-height contours. Squeczing of the noise distribution is clearly seen in (b).

Probing Wigner (GTMD) in diffractive dijet production

Fourier transform of

$$
\begin{aligned}
& \frac{d \sigma^{\gamma_{T}^{*} A \rightarrow q \bar{q} X}}{d y_{1} d^{2} k_{1 \perp} d y_{2} d^{2} k_{2 \perp}} \propto z(1-z)\left[z^{2}+(1-z)^{2}\right] \int d^{2} q_{\perp} d^{2} q_{\perp}^{\prime} S\left(q_{\perp}, \Delta_{\perp}\right) S\left(q_{\perp}^{\prime}, \Delta_{\perp}\right) \\
& \times\left[\frac{\vec{P}_{\perp}}{P_{\perp}^{2}+\epsilon^{2}}-\frac{\vec{P}_{\perp}-\vec{q}_{\perp}}{\left(P_{\perp}-q_{\perp}\right)^{2}+\epsilon^{2}}\right] \cdot\left[\frac{\vec{P}_{\perp}}{P_{\perp}^{2}+\epsilon^{2}}-\frac{\vec{P}_{\perp}-\vec{q}_{\perp}^{\prime}}{\left(P_{\perp}-q_{\perp}^{\prime}\right)^{2}+\epsilon^{2}}\right]
\end{aligned}
$$

$$
\sim d \sigma_{0}+2 \cos 2\left(\phi_{P}-\phi_{\Delta}\right) d \tilde{\sigma}
$$

Summary

- TMDs:
transverse imaging
QCD dynamics, access quark orbital angular momentum
- Exploratory study from HERMES(p), COMPASS (d,p) and JLab 6 GeV (n)
- SoLID-TMD Program
multi-dimensional mapping in the valence region with ultimate precision Transversity/Tensor Charge, Sivers, Other TMDs \rightarrow Orbital Motion
\rightarrow Understanding nucleon 3-d structure, study QCD dynamics, quark orbital angular momentum and more

Detailed information on SoLID: SoLID whitepaper: arXiv:1409.7741; and http://hallaweb.jlab.org/12GeV/SoLID/

EIC will continue the study for sea quarks and gluons

Dilepton Production with e and γ Beams

J/ ψ Threshold Production: Proton Mass Puzzle? TSC and DDVCS: GPDs

Dilepton Production with SoLID

- J/ ψ threshold Production

QCD Dynamics, Proton Mass, Charm-Pentaquark

- Timelike Compton Scattering (Run-group Proposal) Study GPDs, Universality
- Double DVCS (Letter-Of-Intent) GPD beyond $x=\xi$

Proton Mass

Mass Generation

Mass Decomposition

Theoretical Developments

- Dynamical Chiral Symmetry Breaking <-> Confinement
$>$ Responsible for $\mathbf{~ 9 9 \%}$ (?) of the nucleon mass
$>$ Higgs mechanism is (almost) irrelevant to light quarks
$>$ Understand proton mass (energy structure) can provide clue

- Energy Momentum Tensor, ${ }^{\mu \nu}$

Proton Mass Decomposition
$>$ Invariant: $\mathrm{m}^{2}=\mathbf{E}^{2}-\mathrm{P}^{2} \sim$ Trace $\left\langle\mathrm{pl}\left(\mathbf{T}^{\mu \nu}\right)\right| \mathrm{p}>$
$>$ Rest Frame: $\mathrm{m}=\mathrm{E} \sim\left\langle\right.$ plT $\left.^{00}\right| \mathrm{p}>$

- Recent development in theory
$>$ Lattice QCD
$>$ Bound State QCD: Dyson-Schwinger
$>$ Ads/CFT: Holographic QCD
>

Proton Mass Generation

Decomposition - Sum Rules

\square Roles of quarks and gluons?
\diamond QCD energy-momentum tensor:

$$
T^{\mu \nu}=\widehat{T^{\mu \nu}}+\widehat{T^{\mu \nu}}
$$

Traceless term: $\quad \overline{T^{\mu \nu}} \equiv T^{\mu \nu}-\frac{1}{4} g^{\mu \nu} T_{\alpha}^{\alpha}$
£ Trace term: $\quad \widehat{T^{\mu \nu}} \equiv \frac{1}{4} g^{\mu \nu} T_{\alpha}^{\alpha}$

Vacuum expectation
breaks chiral symmetry
with $T_{\alpha}^{\alpha}=\frac{\beta(g)}{2 g} F^{\mu \nu, a} F_{\mu \nu}^{a}+\sum_{q=u, d, s} m_{q}\left(1+\gamma_{m}\right) \bar{\psi}_{q} \psi_{q}$
QCD trace anomaly $\beta(g)=-\left(11-2 n_{f} / 3\right) g^{3} /(4 \pi)^{2}+\ldots$
\diamond Invariant hadron mass (in any frame):

$$
\begin{aligned}
\langle p| T^{\mu \nu}|p\rangle \propto p^{\mu} p^{\nu} & \longmapsto\langle p| T^{\mu \nu}|p\rangle\left(g_{\mu \nu}\right) \propto p^{\mu} p^{\nu}\left(g_{\mu \nu}\right)=m^{2} \\
m^{2} \propto\langle p| T_{\alpha}^{\alpha}|p\rangle & \longmapsto \frac{\beta(g)}{2 g}\langle p| F^{2}|p\rangle
\end{aligned}
$$

At the chiral limit, the entire mass is from gluons!

Proton Mass: QCD energy

X. Ji, PRL741071(1995)

- One can calculate the proton mass through the expectation value of the QCD Hamiltonian,

$$
H_{\mathrm{QCD}}=H_{q}+H_{m}+H_{g}+H_{a} .
$$

$$
H_{q}=\int d^{3} \vec{x} \bar{\psi}(-i \mathbf{D} \cdot \alpha) \psi, \longleftarrow \text { Quark energy }
$$

$$
H_{m}=\int d^{3} \vec{x} \bar{\psi} m \psi, \quad \longleftarrow \text { Quark mass }
$$

$$
H_{g}=\int d^{3} \vec{x} \frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right), \quad \longleftarrow \quad \text { Gluon energy }
$$

$$
H_{a}=\int d^{3} \vec{x} \frac{9 \alpha_{s}}{16 \pi}\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right) . \quad \longleftarrow \quad \text { Trace anomaly (Dark Energy) }
$$

Relating to Measurements

- Traceless part at rest frame becomes quark kinetic energy and gluon energy can be extracted from parton distribution functions scheme and scale dependent
- Quark mass: u and d quark contribution obtain from pi-nucleon sigma term s quark from Chiral Purturbation Theory for baryon octet or LQCD, ...
- Trace Anomaly: analogous to the cosmological constant (dark energy)!
J / ψ threshold production may provide access?

SoLID-J/ $\psi:$ Study Non-Perturbative Gluons

J / Ψ : ideal probe of non-perturbative gluon
The high luminosity \& large acceptance capability of SoLID enables a unique "precision" measurement near threshold

- Shed light on the low energy J/ Ψ-nucleon interaction (color Van der Waals force)
- Shed light on the 'conformal anomaly' an important piece in the proton mass budget:

Models relate J/ Ψ enhancement to trace anomaly

[^0]

Backup

SoLID Impact on Pretzelosity

C．Lefky et al．，PR D 91， 034010 （2015）．
SoLID transversely polarized ${ }^{3} \mathrm{He}$ ，E12－10－006．

Angular Momentum (1)

T. Liu

OAM and pretzelosity:

$$
L_{z}=-\int d x d^{2} k_{\perp} \frac{k_{\perp}{ }^{2}}{2 M_{p}^{2}} h_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)
$$

SoLID impact:

Angular Momentum

Sivers and GPD E :

$$
\begin{aligned}
& f_{1}^{\perp(0)}\left(x, Q_{0}^{2}\right)=-L(\mathrm{x}) E\left(x, 0,0, Q_{0}^{2}\right) \\
& L(\mathrm{x})=\frac{\mathrm{K}}{(1-x)^{\eta}} \text { lensing function }
\end{aligned}
$$

A. Bacchetta et al., PR L 107, 212001 (2011).
$\begin{aligned} & \mathrm{K} \text { and } \eta \text { are fixed by anomalous } \\ & \text { magnetic moments } \mathrm{\kappa}^{\mathrm{p}} \text { and } \mathrm{\kappa}^{\mathrm{n}} .\end{aligned} \quad J=\frac{1}{2} \int d x x[H(x, 0,0)+E(x, 0,0)]$

[^0]: X. Ji PRL 741071 (1995)

