Ħ

Charm Physics with Meson Beam at J-PARC

Hiroyuki NOUMI Research Center for Nuclear Physics, Osaka University Institute of Particle Nuclear Studies, KEK

- 1. Introduction
- 2. Charm Baryon Spectroscopy
- 3. Dilepton Production

Hadron Nuclear Physics at J-PARC

Matter Evolution from Quark to Hadron, Nucleus, and Neutron Star

How QCD works in Hadron?

- Effective DoF (building blocks) to describe hadrons
- Change of Hadron Properties in Matter

How are nuclei formed?

- Extended Nuclear Force: Baryon-Baryon Int.
- Stability of Heavy Neutron Stars

Dense Nucl. Matter

Hyperon Matter

Mystery of Neutron Star

Nucleus

Atom→Molecule→Material,Human,Star,Universe

Quarks drastically change themselves below $\Lambda_{\rm QCD}$.

Quarks drastically change themselves below $\Lambda_{ t QCD}$.

"Constituent Quarks" seem to work rather well as good building blocks of hadrons...

"Exotic hadrons" require a new aspect in describing hadrons beyond the "standard picture".

Hadron Physics at J-PARC

Quasi-Particles (= Effective DoF) emerging at Low E describe hadron properties effectively.

Charm Baryon Spectroscopy

What are good building blocks of Hadrons?

Constituent Quark

hadron (colorless cluster)

Diquark? (Colored cluster)

Diquarks

Color-Magnetic Interaction of two quarks

$$V_{CMI} \sim [\alpha_s/(m_i m_j)]^* (\lambda_i, \lambda_j)(\sigma_i, \sigma_j)$$

 $\rightarrow 0 \text{ if } m_{i,j} \rightarrow \infty$

"Good Diquark": Strong Attraction

$$V_{CMI}(^{1}S_{0}, \overline{3}_{c}) = 1/2*V_{CMI}(^{1}S_{0}, 1_{c})$$
[qq] [\overline{q}q]

What we can learn from baryons with heavy flavors

- Quark motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

Schematic Level Structure of Heavy Baryons

- λ and ρ motions split (Isotope Shift)
- HQ spin multiplet $(\vec{s}_{HQ} \pm \vec{j}_{Brown Muck})$

	strange	charm	bottom
Λ (1830, 5/2 $^-$)			
		$\Lambda_{c}(2940, ?^{?})$	
$m{\Lambda}(1690,?^?) \ m{\Lambda}(1670,1/2^-)$		$\Lambda_{\rm c}$ (2880, 5/2	+)
		$\Lambda_{ m c}$ or $\Sigma_{ m c}$ (276	55, ? [?])
Λ (1520, 3/2 $^-$)		$\Lambda_{\rm c}(2625, 3/2)$	
Λ (1405, 1/2 ⁻) $\Sigma^*(3/2^+)$		$\Lambda_{\rm c}$ (2595, 1/2	$\Lambda_{b}(5920, 3/2^{-})$
$\Sigma^*(3/2^+)$		$\sum_{c}^{*}(3/2^{+})$	${\Lambda_{\mathbf{b}}(5912, 1/2^{-})}$ ${\Sigma_{\mathbf{b}}^{*}(3/2^{+})}$
		$\Sigma_{\rm c}(1/2^+)$	$\Sigma_{\rm b}^{\rm (1/2^+)}$
Σ (1/2+)			
Λ (GS)		$oxed{egin{array}{c} oldsymbol{\Lambda_{c}}(GS)}$	$-\!-\!-\!-\!\Lambda_{b}$ (GS)

non-rel. QM: $H=H_0+V_{conf}+V_{SS}+V_{LS}+V_T$ $\rho-\lambda$ mixing (cal. By T. Yoshida)

non-rel. QM: $H=H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$ $\rho - \lambda$ mixing (cal. By T. Yoshida)

T. Yoshida et al., Phys. Rev. D**92**, 114029(2015)

LQCD Evidence that $\Lambda(1405)$ is a K^{bar}N molecule

 Study of K^{bar}N scattering below the K^{bar}N thres. are important.

High-res., High-momentum Beam Line

A New Platform for Hadron Physics at the High-momentum Beam Line

- High-intensity secondary Pion beam
- High-resolution beam:

A New Platform for Hadron Physics at the High-momentum Beam Line

- High-intensity secondary Pion beam
 >1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam:

^{*} Sanford-Wang:15 kW Loss on Pt, Acceptance:1.5 msr%, 133.2 m

A New Platform for Hadron Physics at the High-momentum Beam Line

- High-intensity secondary Pion beam
 >1.0 x 10⁷ pions/sec @ 20GeV/c
- High-resolution beam: $\Delta p/p^{\sim}0.1\%$

Charmed Baryon Spectroscopy Using Missing Mass Techniques

Spectrometer Design

Spectrometer Design

Acceptance: ~ 60% for D^* , ~ 80% for decay π^+

Resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c (Rigidity: ~2.1 Tm)

Charmed Baryon Spectroscopy Using Missing Mass Techniques

- ✓ Production and Decay reflect [qq] correlation in Excited Y_c^*
- ✓ C.S. DOES NOT go down at higher L when $q_{eff} > 1$ GeV/c.

S.H. Kim, A. Hosaka, H.C. Kim, and HN, PTEP, (2014) 103D01, S.H. Kim, A. Hosaka, H.C. Kim, and HN, Phys.Rev. D92 (2015) 094021

Production Cross Section

- Experimental data:
 - $\underline{\sigma(p(\pi^-,D^{*-})\Lambda_c)} < \frac{7 \text{ nb (68\%CL)}}{(BNL exp., 1985)}$
 - BG spectrum is well reproduced by a MC simulation w/ JAM
- Regge Theory suggests 10⁻⁴ of the hyperon production
 - $\underline{\sigma(p(\pi^-,D^{*-})\Lambda_c)} \sim \underline{a \text{ few nb}}$

Production Rate

 t-channel D* Reggeon at a forward angle

S. H. Kim, et al., PTEP, 2014, 103D01(2014) Production Rates are determined by the overlap of WFs

$$R \sim \langle \varphi_f \left| \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \rangle$$

and depend on:

- 1. Spin/Isospin Config. of Y_c Spin/Isospin Factor
- 2. Momentum transfer (q_{eff})

$$I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$$

A~0.42 GeV ([Baryon size]⁻¹) q_{eff} ~1.4 GeV/c

Comparison of production rates

- $\Leftrightarrow e^+e^-$ Belle Data (Hadron2013)

New data from LHCb

J. High Energ. Phys. (2017) 2017

• $D^0 p$ invariant mass in $\Lambda_b o D^0 p \pi^-$

- $-\Lambda_{c}(2940)$
 - likely 3/2-, (acceptable 1/2, 7/2)
- $-\Lambda_c(2880)$
 - 5/2+ confirmed
- $-\Lambda_{c}(2860)$
 - likely 3/2+, new D-wave resonance?

non-rel. QM: $H=H_0+V_{conf}+V_{SS}+V_{LS}+V_T$ $\rho-\lambda$ mixing (cal. By T. Yoshida)

New data from LHCb

J. High Energ. Phys. (2017) 2017

• D^0p invariant mass in $\Lambda_b \to D^0p\pi^-$

- $-\Lambda_{c}(2940)$
 - likely 3/2-, (acceptable 1/2, 7/2)
- $-\Lambda_c(2880)$
 - 5/2+ confirmed
- $-\Lambda_{c}(2860)$
 - likely 3/2+, new D-wave resonance?

- Is $\Lambda_c(2940)$ an L=3 state (λ mode)?
- Are $\Lambda_c(2880)$ and $\Lambda_c(2860)$ LS partners of L=2 (λ modes)?
- Production rates in $p(\pi^-, D^{*-})Y_c^*$ will give answer.

2.45

2.55

 $M(\Lambda_c^+\pi^\pm)$, GeV/ c^2

Is it a D-wave Lambda-c Baryon? If so, where is a spin partner?

Does $\Lambda(2880)$ have L=2?

- P-wave transition seems to be suppressed in $\Lambda_c(2880)^{\frac{5}{2}^+} \to \Sigma_c^*(2520)^{\frac{3}{2}^+} + \pi(0^-)$.
- It would be forbidden only in the case of $J_{BM}^P=3^+$:
 - Negative party states "5/2-" have large widths.
 (H. Nagahiro et al., PRD95 (2017) no.1, 014023)

$\Lambda_{\rm c}$ (2880) 5/2+	λλ	λρ	ρρ
color		Asymm.	
Isospin	Asymm. (I=0)		
Diquark spin Diquark orbit	Asymm. 0 Symm. 0	Symm. 1 Asymm. 1	Asymm. 0 Symm, 2
Lambda orbit	2	1	0
J _{BM} ^P	2+	1+, 2+, 3 +	2+

$\Sigma_{\rm c}^{\ *}$ (2520) 3/2+			
Asymm			
Symm. (I=1)			
Symm. 1 Symm, 0			
0			
1+			

- $\Lambda_c(2880)^{\frac{5}{2}+}$ is likely to be $\lambda \rho$ mode (λ =1, ρ =1).
 - Since, Naively, Ex($\lambda\lambda$)<Ex($\lambda\rho$), Ex(2880) is too low if it is a $\lambda\rho$ state.
- This can be tested by measuring its production rate.

* Branching ratios: Diquark corr. affects $\Gamma(\Lambda_c^*->pD)/\Gamma(\overline{\Lambda_c^*}->\Sigma_c\pi)$.

Y_c* Decay Branching Ratio

Hint in $R(NK)/R(\pi\Sigma)$

- Decay ratios in known hyperons SUGGEST the λ/ρ mode states
- λ/ρ mode ID by productions correlate w/ Decay Ratios
 → to be established

- ◆ Hyperon data indicate mode dependence
 → Errors should be improved.
- No data in charmed baryons

Dilepton Production

Muon ID

T. Sawada, W.C. Chang, et al.

Conceptual design of muon identification system for the J-PARC E50

Hadron Tomography w/ Exclusive Drell-Yan

CHARM Spectrometer + Muon Detector at High-p BL

$$\pi^- + p \rightarrow \mu^+ + \mu^- + n$$

$$\pi^{-} + p \rightarrow \mu^{+} + \mu^{-} + \Delta^{0}$$

 $K^{-} + p \rightarrow \mu^{+} + \mu^{-} + Y^{*}$

$$N \rightarrow \Delta (Y^*) TDA$$

$P_c^+(4380), P_c^+(4450)$ from LHCb

• Found in $J/\psi p$ invariant mass in $\Lambda_b \to J/\psi p K^-$

-
$$m_{4380} = (4380 \pm 8 \pm 29) \text{MeV}, \ \Gamma = (205 \pm 18 + 86) \text{MeV}$$

 $m_{4450} = (4449.8 \pm 1.7 \pm 2.5) \text{MeV}, \ \Gamma = (39 \pm 5 + 19) \text{MeV}$

- $-J^{p}$: (3/2-, 5/2+) most likely, respectively
 - (3/2+, 5/2-), (5/2+,3/2-) are acceptable.
- Hidden $c\bar{c}$ state, P_c^0 may exist.
- decay branch?

$$-J/\psi + N, \overline{D}^{(*)} + Y_c^{(*)}$$

Its spin family?

R. Aaij et al.

$P_c^0(4380), P_c^0(4450)$ at J-PARC

• P_c^0 : s-channel formation with 10 GeV/c π^- on p

- Cross Section: <1 nb?
 - $-\Gamma_{\pi N}/\Gamma_{tot}$ ~ 10⁻⁵
 - $-\Gamma_{j/\psi p}/\Gamma_{tot}$ ~0.05

$$\sigma_L = (2L+1)\frac{\pi}{k^2} \frac{\Gamma_{\pi N} \Gamma_{J/\psi p}}{(E-m)^2 + \Gamma_{tot}^2/4}$$

Summary

- 1. Diquark correlation in baryons could be disentangled with heavy flavors
 - Mass spectrum, Production Rate, and Decay Branching ratio
 - Charmed Baryons from the ground state up to highspin states
- 2. A general purpose spectrometer will be constructed at the J-PARC High-p BL
 - open a unique platform of hadron physics by means of missing mass technique