Discussion Session:

When "Inclusive" meets "Exclusive" - Exclusive Hard Process

November 8, 2017

CIP (PRL 43, 1219, (1979)) : Longitudinally Polarized Photon at large x_{1}

E615 (PRD 39, 92 (1989)): Higher Twist Effect at large x_{π}

CIP (PRL 58, 2523 (1987))
 $: \pi W \rightarrow J / \psi X$
 Sign of $q \bar{q}$ annihilation dominating?

$d^{2} \sigma / d \cos \theta d \phi \propto 1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi$
$+\frac{1}{2} v \sin ^{2} \theta \cos 2 \phi$.

FIG. 4. The J / ψ decay angular distribution vs $\cos \theta$ for the five regions of ϕ, and summed over all ϕ in the highest x_{F} bin, $0.95<x_{F}<1.0$. The histograms are the result of the fit described in the text. (a) $-\pi<\phi<-0.6 \pi$, (b) $-0.6 \pi<\phi$ $<-0.2 \pi$, (c) $-0.2 \pi<\phi<0.2 \pi$, (d) $0.2 \pi<\phi<0.6 \pi$, (e) 0.6π $<\phi<\pi$, (f) $-\pi<\phi<\pi$.

Berger and Brodsky (PRL 42, 940, (1979)) : Higher Twist Effect at large x_{π}
(a)

(b)

$$
d \sigma \propto\left(1-x_{\pi}\right)^{2}\left(1+\cos ^{2} \theta\right)+\frac{4 x_{\pi}^{2}\left\langle k_{T}^{2}\right\rangle}{9 m_{\mu \mu}^{2}} \sin ^{2} \theta
$$

Brandenburg et al. (PRL 73, 939 (1994))
 Higher-twist Effect \& Pion Distribution Amplitude

(a)

(b)

$$
\begin{aligned}
\frac{Q^{2} d \sigma\left(\pi^{-} N \rightarrow \mu^{+} \mu^{-} X\right)}{d Q^{2} d Q_{T}^{2} d x_{L} d \Omega}= & \frac{1}{(2 \pi)^{4}} \frac{1}{64} \int_{0}^{1} d x_{u} G_{u / N}\left(x_{u}\right) \int_{0}^{1} d x_{\bar{u}} \frac{x_{\bar{u}}}{1-x_{\bar{u}}+Q_{T}^{2} / Q^{2}}|M|^{2} \\
& \times \delta\left(x_{L .}-x_{\bar{u}}+x_{u}-Q_{T}^{2} s^{-1}\left(1-x_{\bar{u}}\right)^{-1}\right) \\
M=\int_{0}^{1} d z \phi\left(z, \tilde{Q}^{2}\right) T, \quad & \times \delta\left(Q^{2}-s x_{u} x_{\bar{u}}+Q_{T}^{2}\left(1-x_{\bar{u}}\right)^{-1}\right)+\{u \rightarrow \bar{d}, \bar{u} \rightarrow d\} .
\end{aligned}
$$

Pion distribution amplitude: distribution of LC momentum fractions in the lowest-particle number valence Fock state.
A. P. Bakulev, N. G. Stefanis, and O. V. Teryaev (Phys. Rev. D 76, 074032 (2007))

Pion Distribution Amplitude

asymptotic-like form $=6 y(1-y)$
Chernyak-Zhitnitsky (CZ)-like form
Nonlocal QCD sum rules
A. P. Bakulev, N. G. Stefanis, and O. V. Teryaev
(Phys. Rev. D 76, 074032 (2007))

Sensitivity of Pion DA to $\lambda, \mu_{\rho=0.06}^{\mu}, \boldsymbol{V}_{0.3}$

$$
\rho=\frac{P_{\gamma^{*}}^{T}}{M_{\gamma^{*}}}
$$

SIDIS (kaon) multiplicities

Charged kaon multiplicities ($2006160 \mathrm{GeV}^{6} \mathrm{LiD}$) - published in PLB 767 (2017) 133
The 3-dimensional data set $(x, y$ and $z) \rightarrow$ an important input for future NLO pQCD analyses of world data in terms of FFs.

Important message - HERMES and COMPASS data are in tension.
Can not be explained only by different
Q^{2} range, the-discussion is going on.
Large Z,

Recently new results were produced on the kaon multiplicity ratio $\mathrm{K}^{+} / \mathrm{K}^{-}$, at high $\mathrm{z}, 0.75<\mathrm{z}<1$. Surprisingly our data go far beyond the LO upper boundary value of $(u+d) /(\bar{u}+đ)$ calculated at $x=0.03$ using MSTW08L as well as beyond the actual predictions of the $\mathrm{K}^{+} / \mathrm{K}^{-}$multiplicity ratio using Lund model or LO DSS fit.

Exclusive large x limit

- Consider the dilepton carrying the most of collision energy; small number of hadrons in the central region; correspond to large x of pdf's
- DIS - Bloom Gilman duality, Drell-Yan-West relations
- Is there any analog for DY?

Exclusive limit : DIS and space-like (transitional and elastic) FFs

- Small invariant mass

- BG duality and DYW relation
- Relation between x->1 and large Q^{2}
- pdf ~ (FF) ${ }^{2}$

Exclusive limit of DY and time-like FFs (OT'14)

- (Proton-antiproton) DY at small s - Q^{2}

- Other beams - baryon number conservation - time-like transition FFs

P. Hoyer, M. Jrvinen and S. Kurki, JHEP 0810 (2008) 086, arXiv: 0808.0626

$$
\begin{aligned}
& \text { Factorization: } \quad \sigma=f_{\bar{q} / \pi}\left(x_{1}\right) f_{q / N}\left(x_{2}\right) \hat{\sigma}\left(\bar{q} q \rightarrow \gamma^{*}\right) \\
& \text { Higher twist corrections are of order } \frac{1}{Q^{2}} \frac{1}{1-x} \\
& \text { Leading twist: One active parton in beam and target hadrons } \\
& \text { Spectators are incoherent with the hard subprocess } Q_{1}^{2}, x_{2} ; x_{F}=x_{1}-x_{2} s \rightarrow \infty \text { fixatow Januarv 6.2009 } \\
& \text { Transversely polarized photon, } \\
& \text { since quarks are } \sim \text { on-shell }
\end{aligned}
$$

P. Hoyer, M. Jrvinen and S. Kurki, JHEP 0810 (2008) 086, arXiv: 0808.0626

Drell-Yan in the BB limit: $Q^{2} \rightarrow \infty$ at fixed $Q^{2}\left(1-x_{F}\right)$

$$
M_{X}^{2} \equiv(k+p-q)^{2} \simeq\left(1-x_{B}\right)\left[s\left(1-x_{F}\right)+m_{N}^{2}\right] \quad \text { fixed }
$$

Stopped quark is comoving with the target.
Its interactions in the target affect the hard subprocess.

P. Hoyer, M. Jrvinen and S. Kurki, JHEP 0810 (2008) 086, arXiv: 0808.0626

For each final state X the target matrix element is given by a GPD with skewness

$$
l_{2}^{+}-l_{1}^{+}=q^{+}=x_{B} p^{+}
$$

Using perturbative propagators for the gluon q_{1}

The pion pole

For π^{+}production - pion pole: (Mankiewicz et al (98), Penttinen et al (99))

$$
\begin{aligned}
& \widetilde{E}_{\text {pole }}^{u}=-\widetilde{E}_{\text {pole }}^{d}=\Theta(|x| \leq \xi) \frac{m f_{\pi} g_{\pi N N}}{\sqrt{2} \xi} \frac{F_{\pi N N}(t)}{m_{\pi}^{2}-t} \Phi_{\pi}\left(\frac{x+\xi}{2 \xi}\right) \\
& \Longrightarrow \frac{d \sigma_{L}^{\text {pole }}}{d t} \sim \frac{-t}{Q^{2}}\left[\sqrt{2} e_{0} g_{\pi N N} \frac{F_{\pi N N}(t)}{m_{\pi}^{2}-t} Q^{2} F_{\pi}^{\text {pert }}\left(Q^{2}\right)\right]^{2} \\
& \text { understimates cross ssection (blue line) } \\
& F_{\pi}^{\text {pert. }} \simeq 0.3-0.5 F_{\pi}^{\text {exp. }}
\end{aligned}
$$

(note: F_{π} measured in π^{+}electroproduction at Jlab)

Goloskokov-K(09): $F_{\pi}^{\text {pert }} \rightarrow F_{\pi}^{\exp }$
as one-pion-exchange contr.
knowledge of the sixties suffices to explain
π^{+}data at small $-t$
(detailed comparison Favart et al (16))

Constituent-Counting Rule in Hard Exclusive Process

$$
\frac{d \sigma}{d t}(a+b \rightarrow c+d)=\frac{1}{s^{n-2}} f\left(\theta_{C M}\right) \quad n=n_{a}+n_{b}+n_{c}+n_{d}
$$

Quark Degrees of Λ (1405)

Kawamura et al., PRD 88, 034010 (2013)

$$
\pi^{-}+p \rightarrow \mathrm{~K}^{0}+\Lambda(1405)
$$

[^0]

From Inclusive to Exclusive

(a)

(b)
(a) Semi-exclusive pion-induced Drell-Yan process at large x_{π} (b) Exclusive pion-induced Drell-Yan process.

$$
\mathrm{s}, Q^{2}, x_{1}\left(x_{F}\right), P_{T} \quad \mathrm{~s}, Q^{2}, x_{1}\left(x_{F}\right)=1, P_{T} \quad \mathrm{~s}, Q^{2}, \tau, t
$$

Extraction of GPDs

Space-like vs. Time-like Processes
Muller et al., PRD 86 031502(R) (2012)

"GPD" and "Transition GPD"

"Transition GPD": L. L. Frankfurt et al., PRD 60, 014010 (1999)

- $\pi^{-} \mathrm{p} \rightarrow \gamma^{*} n$
- $\pi^{-} \mathrm{p} \rightarrow \gamma^{*} \Delta^{0}$
- $\pi^{-} \mathrm{n} \rightarrow \gamma^{*} \Delta^{-}$
- $\pi^{+} \mathrm{n} \rightarrow \gamma^{*} \mathrm{p}$
- $\pi^{+} \mathrm{p} \rightarrow \gamma^{*} \Delta^{++}$
- $\pi^{+} \mathrm{n} \rightarrow \gamma^{*} \Delta^{+}$
- $K^{-} p \rightarrow \gamma^{*} \Lambda$
- $K^{-} p \rightarrow \gamma^{*} \Lambda(1405)$
- $K^{-} p \rightarrow \gamma^{*} \Lambda(1520)$
- $K^{-} \mathrm{n} \rightarrow \gamma^{*} \Sigma^{-}$
- $K^{+} \mathrm{n} \rightarrow \gamma^{*} \Theta^{+}$

A Few Simple Questions

- Should we consider the finite quark mass, kT or pT in the exclusive limit?
- Can we learn something from the measurements of semi-inclusive DY events which match those with exclusive DY ones?

[^0]: T. Sekihara's talk

