- 1) Nuclear effects of Drell-Yan, quarkonium, and charm production in p-A and π -A collisions
- 2) Sign of TMD functions (transversity, Boer-Mulders function, Sivers function)

Nuclear effects of Drell-Yan, quarkonium, and charm production in p-A collisions

Jen-Chieh Peng

University of Illinois at Urbana-Champaign ECT Workshop, June 3-7, 2008, Trento, Italy

- A-dependence results from Fermilab E772,
 E789 and E866 dimuon experiments
 - What have we learned?
 - Results from E866
- Future prospects of Fermilab E906 and J-PARC dimuon experiments
 - What do we hope to learn?

Nuclear effects of Quarkonium productions

 $p + A at s^{1/2} = 38.8 GeV$

Nuclear effects scale with x_F , not x_2 What about negative x_F ?

Nuclear dependence of J/Ψ production at negative X_F

HERA-B 920 GeV p+W and p+C

P_T - broadening for D-Y, J/Ψ and Y

Extract $\langle P_T^2 \rangle$ from fits to data

800 GeV P + A
$$\rightarrow$$
 J/ ψ

- $\Delta < P_T^2 > \text{ for J/}\Psi \text{ is larger than for D-Y}$
- Similar behavior for J/Ψ and Y

Comparison between the J/Ψ and Ψ' nuclear effects

 $p + A \rightarrow J/\Psi$ or Ψ ' at $s^{1/2} = 38.8$ GeV

 $\alpha(x_F)$ is largely the same for J/ Ψ and Ψ ' (except at $x_F \sim 0$ region)

'Universal' behavior for $\alpha(p_T)$ (similar for J/ Ψ , Ψ '; weak s^{1/2} dependence)

Nuclear effects of open-charm production

$$p + A \rightarrow D + x \text{ at } s^{1/2} = 38.8 \text{ GeV}$$

E789 open-aperture, silicon vertex + dihadron detection

h⁺h⁻ mass spectrum (after vertex cut)

No nuclear effect for D production (at xF ~ 0)

Need to extend the measurements to large x_F region

Single muon measurement in E866 p+A

Thesis of Stephen Klinksiek

Targets (Z = -24.0")

0 = Empty

1 = 0.502 "Copper

2 = 2.036 " Beryllium

3 = 1.004 "Copper

Single Muon Trigger

Light hadron background is greatly reduced for beam-dump events!

Single muon measurement in E866 p+A

800 GeV proton beam

Black points: data

Red points: background from pi and K decays

Blue points: muons from

charm decay

Signs of TMDs (Transversity, Sivers, Boer-Mulders)

Three parton distributions describing quark's transverse momentum and/or transverse spin

Three transverse quantities:

1) Nucleon transverse spin

$$\vec{S}_{\perp}^{N}$$

2) Quark transverse spin

$$\vec{S}_{\perp}^{q}$$

3) Qaurk transverse momentum

$$\vec{k}_{\perp}^{q}$$

 \Rightarrow Three different correlations

1) Transversity

$$h_{1T} =$$

Correlation between \vec{s}_{\perp}^{q} and \vec{S}_{\perp}^{N}

2) Sivers function

f_1T = -

$$\mathbf{f}_{1T}^{\perp} = \mathbf{0}$$
 -

Correlation between \vec{S}_{\perp}^{N} and \vec{k}_{\perp}^{q}

3) Boer-Mulders function

$$\mathbf{h}_{1}^{\perp} = \mathbf{p}$$

Correlation between \vec{s}_{\perp}^{q} and \vec{k}_{\perp}^{q}

Quark-diquark Models for Boer-Mulders Function h₁[⊥]

Quark-diquark model including axial-diquarks Gamberg, Goldstein & Schlegel, arXiv:0708.0324.

Opposite sign for the u and d quarks Sivers functions

Same sign for the u and d quarks B-M functions

A simple "explanation" for the signs of the upand down-quark Boer-Mulders functions

From fits to SIDIS data, we know that

1) transversity

$$h_1(u) > 0$$
 $h_1(d) < 0$

2) Sivers function

$$f_{1T}^{\perp}(u) < 0$$
 $f_{1T}^{\perp}(d) > 0$

3) Boer-Mulders function One expects

$$h_1^{\perp}(u) < 0 \qquad h_1^{\perp}(d) < 0$$

1) Transversity

Correlation between \vec{s}_{\perp}^{q} and \vec{S}_{\perp}^{N}

2) Sivers function

Correlation between \vec{S}_{\perp}^{N} and \vec{k}_{\perp}^{q}

3) Boer-Mulders function

Correlation between \vec{s}_{\perp}^{q} and \vec{k}_{\perp}^{q}

Can one test the predicted sign-change from DIS to D-Y for pion's B-M function?

1) From NA10 pion Drell-Yan data, one deduces that the product of the pion valence quark B-M function and the proton valence quark B-M function is positive. Using *u*-quark dominance, we have:

$$h_{1,u}^{\perp,DY}(p) * h_{1,u}^{\perp,DY}(\pi) > 0$$

Therefore, either a) $h_{1,u}^{\perp,DY}(p) > 0$; $h_{1,u}^{\perp,DY}(\pi) > 0$ (sign-change) or b) $h_{1,u}^{\perp,DY}(p) < 0$; $h_{1,u}^{\perp,DY}(\pi) < 0$ ($no \, sign-change$)

- 2) In polarized πp D-Y, the $\sin(2\phi \phi_S)$ modulation is sensitive to the sign of $h_{1,u}^{\perp,DY}(\pi)$ (being measured at COMPASS)
- 3) Need to measure the sign of pion's B-M function in DIS (or rely on theory)

How to measure pion B-M function in SIDIS?

SIDIS on the meson cloud of proton at EIC

TSIDIS (Tagged Semi-Inclusive DIS)

TSIDIS

$$e^{-} + p \rightarrow e^{-'} + n + \pi^{\pm} + x$$

underlying process:

$$e^{-} + \pi^{+} \rightarrow e^{-'} + \pi^{\pm} + x$$

- 1) An independent check of pion's PDF
- 2) Could allow valence-sea flavor separation

Detected π^- is most likely from \overline{u} (or d) sea in π^+

Detected π^+ is most likely from valence $u(\operatorname{or} \overline{d})$ in π^+

3) Pion B-M function is extracted from $\cos 2\phi$ modulation

Nuclear modification of spin-dependent PDF?

EMC effect for $g_1(x)$

Figure 7: EMC ratios for ¹¹B. The experimental data refer to ¹²C.

Bentz, Cloet et al., arXiv:0711.0392

Very difficult to measure!

Easier to measure the nuclear modification of Boer-Mulders functions (only unpolarized targets are required)?

(See Bianconi and Radici, J. Phys. G31 (2005) 645)

Nuclear modification of the B-M function?

Can be measured at COMPASS