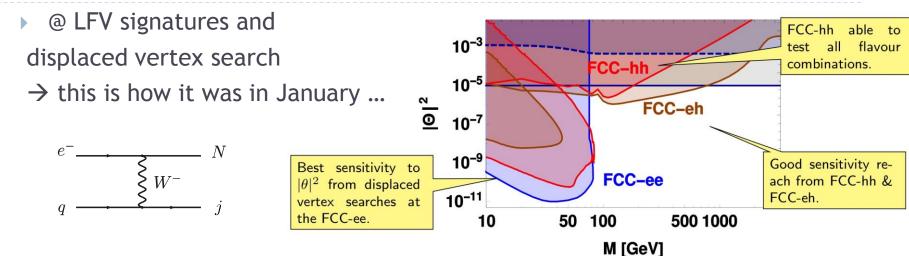
Overview of BSM physics at LHeC and FCC-eh

Monica D'Onc (University of Liv

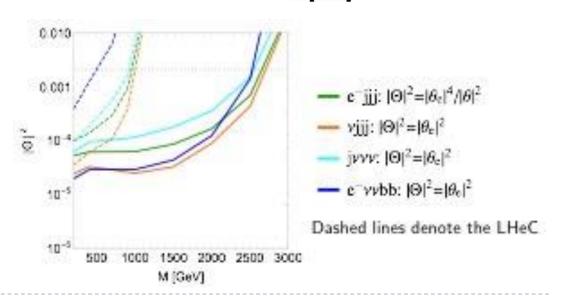
FCC hh ee he

Georges Azuelos
(University of Montreal)

LHeC/FCCeh workshop September 11th 2017


Introduction

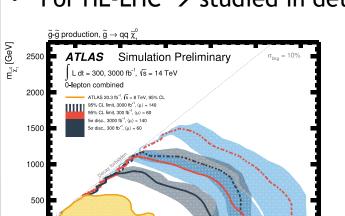
- BSM physics is a broad topic!
- We have already seen a lot in this workshop
 - BSM Higgs physics, intended as new decays of the SM higgs boson or as production of new (usually heavy) additional higgs bosons
 - BSM Top physics, e.g. FCNC in the top sector
- In this session, we will see more on what LHeC and FCCeh can do in the hunt for new physics
 - Indirect complementarities with HL-LHC and FCC-hh
 - Direct searches
 - ▶ The "classic": leptoquarks, contact interactions, RPV SUSY
 - Anomalous couplings, instantons and more...
 - New fronts: long-lived particles, EWK SUSY searches



Some examples at this meeting

Heavy and sterile neutrinos (see Oliver Fischer's talk today)

lepton-flavor-conserving signatures



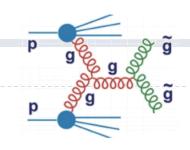
Impact of PDF @ High x

 large uncertainties in high x PDFs limit searches for NP many interesting processes at LHC are gluon-gluon initiated: top, Higgs, ... and BSM processes, such as gluino pair production

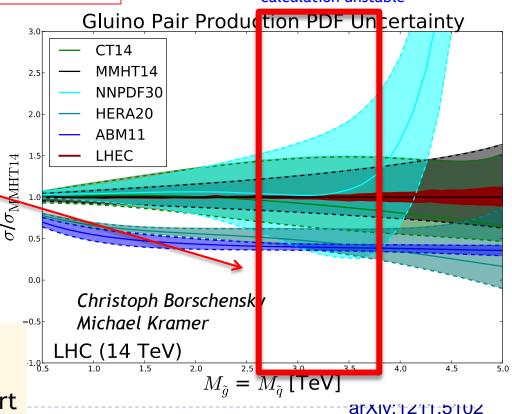
< x > ~ 0.4

For HL-LHC → studied in detail impact of LHeC

2500

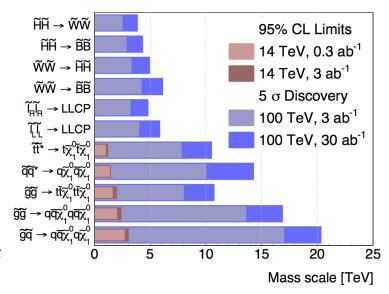

m_ã [GeV]

M(squark)=M(gluino)= μ_R = μ_F


1500

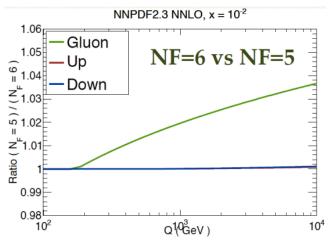
- LHeC PDF uncertainties unchanged
- Normalized to MMHT14

Hopefully, we will update studies with LHeC PDF unc in performing studies for the HL-LHC Yellow Report

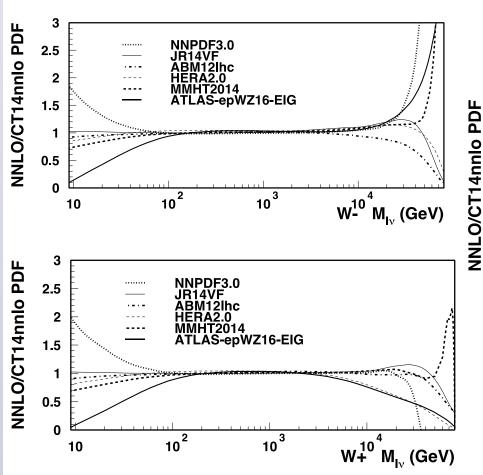

prescription from J. Rojo to avoid negative x-section at at high masses for NNPDF30nlo \rightarrow x-section calculation unstable

Monica D'Unotrio, Georges Azuelos - LHeC workshop

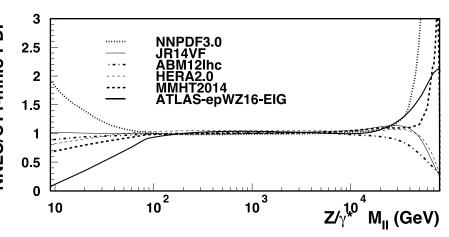
Impact of PDF @ High x: FCC


- FCC-hh reach up to 13(16) TeV for gluino pair production, 17(20) TeV for nondecoupled squark/gluino for 3(30)/ab⁻¹
- Similar x range for the sensitive region
 (<x> ~ 0.4) → ~40-50% uncertainties on the
 prediction of gluon-gluon initiated processes
 - Might be an issue also for central values

Other aspects might play a non-negligible role:


Top PDF: at the very high Q2, top becomes small and will have to be included as 6F PDFs

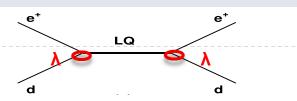
No doubts that having an e-p machine running in parallel with p-p will be very important

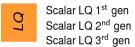


Impact of PDF: High mass Drell-Yan

Non resonant searches for ED (interference) sensitive to tails of DY distributions thus to PDF. Predominantly q-qbar

Uta Klein VRAP 0.9 for NNLO QCD

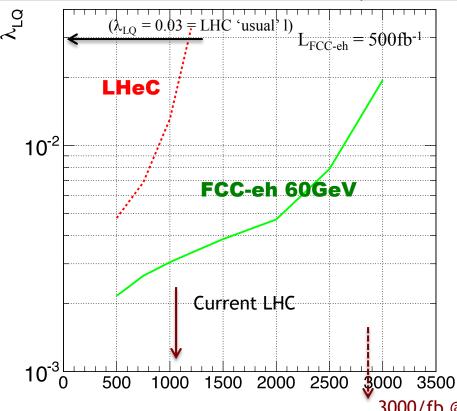



"Troubles" at low and high x

FCCeh (and before, LHeC) can improve low and high M(ll) and M(lv) precision for standard candle measurements and searches for new physics

Direct searches: Lepto-quarks

1st generation LQs → Current constraints almost there with 3.2/fb @ 13 TeV



 M_{LO}

ep scenario:

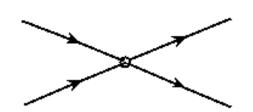
sensitive to $\lambda \ll e = \sqrt{4\pi\alpha} = 0.03$

Sensitivity of HL-LHC could go to

- ~2.8 2.9 TeV
- → Close to the reach for FCC-eh
- → Dependence on lambda

If deviations are found by the end of HL-LHC, FCC-hh will definitely see them, and FCC-eh can characterize those signals!

3000/fb @ 14 TeV ~ 2.9 TeV reach

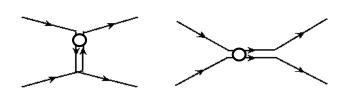

(use http://collider-reach.web.cern.ch)

Contact interactions

- if new physics enters at higher scales: $\Lambda >> I$ s
- such indirect signatures can be seen as effective 4-fermion interaction

$$\mathcal{L} = \frac{4\pi}{2\Lambda^2} j_{\mu}^{(e)} j^{\mu(q)}; \quad j_{\mu}^{(f=e,q)} = \eta_L \, \bar{f}_L \gamma_{\mu} f_L + \eta_R \, \bar{f}_R \gamma_{\mu} f_R + h.c.$$

 \Rightarrow all combinations of couplings $\eta_{ij} = \eta_i^{(e)} \eta_i^{(q)}; \quad q = u, d$



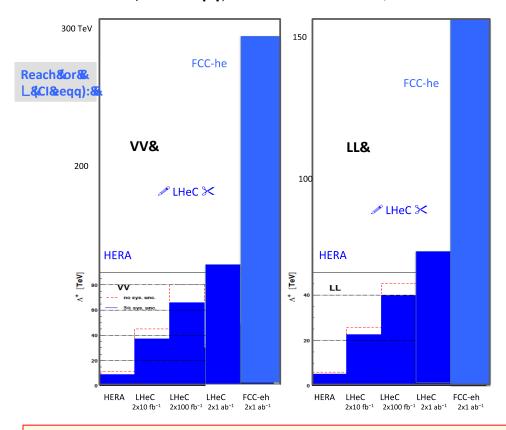
may be applied very generally to new phenomena

LQ mass >> √s

Planck scale (Ms) of extra dimensional models compositeness scale

Sensitivity to fermion radius recalculated with current expectations at the FCC-eh

$$R \rightarrow 3(1.5) \times 10^{-20} m$$

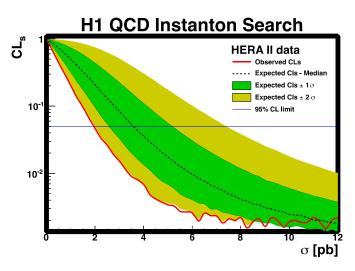

pessimistic(optimistic) calculations

form factor:
$$f(Q^2) = 1 - \frac{1}{6} \left\langle r^2 \right\rangle Q^2$$

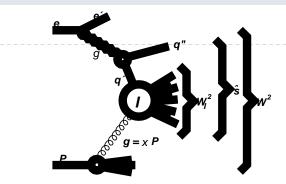
$$\frac{d\sigma}{dQ^2} = \frac{d\sigma_{SM}}{dQ^2} f_e^2(Q^2) f_q^2(Q^2)$$

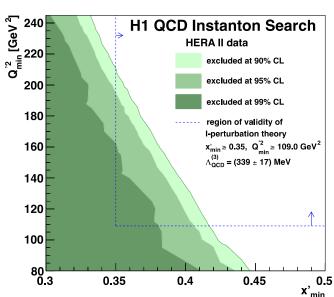
Contact interactions (eeqq)

- New currents or heavy bosons may produce indirect effect via new particle exchange interfering with γ/Z fields.
- Reach for Λ (Cl eeqq): VV: ~290 TeV; LL: ~160 TeV


VV: all couplings with +ve sign

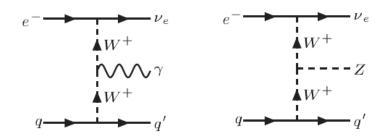
LL: only LL couplings between q and e


~ equivalent sensitivity at the FCC-hh at least for some of the couplings (same as HL-LHC vs LHeC) but need more calculations!

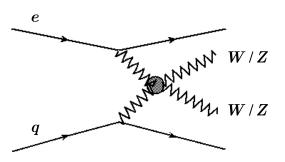

E-p "specific" searches: Instantons

- New physics as non-perturbative QCD effect at high energies
 - Instantons → non-perturbative fluctuations of the gluon field
- Photon-gluon fusion process
- HERA recent results start probing interesting theoretical scenarios

Eur. Phys. J. C76 (2016) no. 7, 381



Feasibility is now been considered → code to generate it with new Herwig7 being tested but still issues in compiling it (S. Amoroso)


BSM in Vector Boson (VB) scattering

- VB scattering at high mass:
 - anomalous TGC, QGC couplings in VVV, VVVV ?

- New resonances possibly relevant for unitarity restoring
 - ▶ expect below ~ 2-3 TeV → look for deviations from SM predictions:

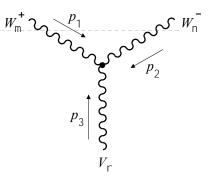
$$e^-q \rightarrow e^-(q)WZ$$
, $(vq)WZ$

Challenging at p-p (high QCD bkg, pile-up), cleaner at FCC-eh

Anomalous couplings WWV

- ▶ Triple gauge boson vertices WWV, $V=\gamma$, Z:
 - Precisely defined in SM
 - Parametrise possible new physics contributions to this vertex $(\Delta \kappa_{\gamma}, \lambda_{\gamma})$
 - Current constraints (best from LEP) use various assumptions

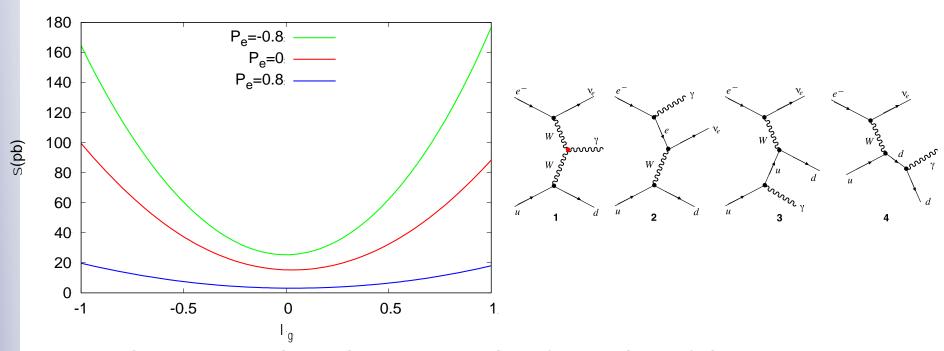
	LEP [9] CDF [12]		D0 [13]	ATLAS [10]	CMS [11]	
Δκγ	[-0.099, 0.066]	[-0.460, 0.390]	[-0.158, 0.255]	[-0.135, 0.190]	[-0.210, 0.220]	
λ_{v}	[-0.059, 0.017]	[-0.180, 0.170]	[-0.036, 0.044]	[-0.065, 0.061]	[-0.048, 0.037]	


Table 1: Allowed ranges, at 95% C.L., on the anomalous WWγ couplings from the data collected at the LEP, Tevatron and LHC experiments. In each case, the most restrictive of the reported measurements is taken.

http://arxiv.org/pdf/1405.6056v1.pdf

At the e-p:

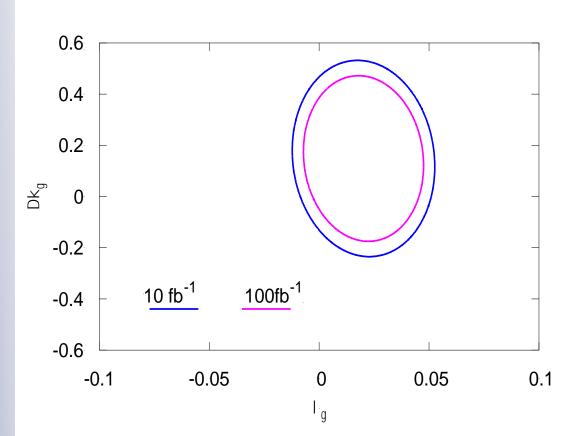
https://arxiv.org/abs/1406.7696


- can clearly distinguish between CC events $e + p \rightarrow ve + jet$ (W-exchange) and NC events $e + p \rightarrow e + jet$ (photon or Z boson exchange)
- triggering on a final state photon, can provide very clean bounds on the anomalous TGV's!

FCC-eh Anomalous WW γ and WWZ Couplings

- Study for FCC-eh
- https://cds.cern.ch/record/2209389/?ln=en
 - Report studies for Ee = 80 GeV
 - Update here for Ee = 60 GeV

A. Senol, O. Cakir, I. Turk Cakirç



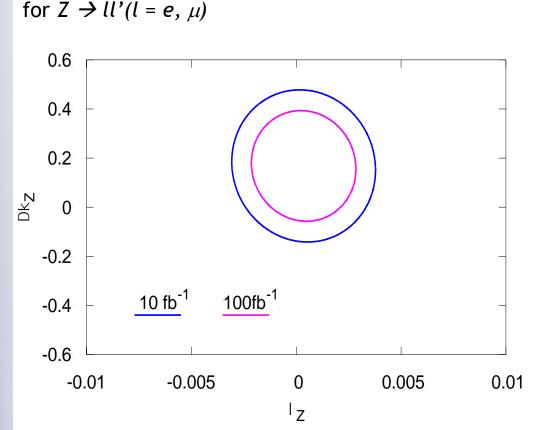
Cross section depending on anomalous λ_{γ} coupling of the process $ep \rightarrow v \ q \gamma X$ for $E_e = 60$ GeV and $E_p = 50$ TeV at FCC-ep.

Anomalous WWy Couplings

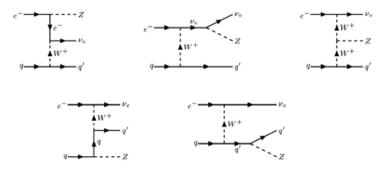
$$\delta\Delta\kappa_V = \Delta\kappa_V^{upper} - \Delta\kappa_V^{lower}$$
, $\delta\lambda_V = \lambda_V^{upper} - \lambda_V^{lower}$

A. Senol, O. Cakir, I. Turk Cakirç

Sensitivities to anomalous couplings $\lambda_{\gamma} \sim 10^{-2}$ For comparison:


TABLE I THE AVAILABLE 95% C.L. TWO-PARAMETER BOUNDS ON ANOMALOUS COUPLINGS ($\Delta\kappa\gamma,\lambda\gamma$) and ($\Delta Kz,\lambda Z$) from the Atlas and CMS

	ATLAS	CMS	ATLAS (upper- lower)	CMS (upper- lower)
Δκγ	-0.420,0.480	-0.250, 0.250	0.900	0.500
λγ	-0.068,0.062	-0.050, 0.042	0.130	0.092
$\Delta \kappa z$	-0.045,0.045	-0.160, 0.180	0.090	0.340
λz	-0.063,0.063	-0.055, 0.055	0.126	0.110


Two dimensional 95% C.L contour plot anomalous couplings in the λ_{γ} - $\Delta \kappa_{\gamma}$ plane for the integrated luminosity of 10 fb-1 and 100 fb-1 at FCC-ep with electron beam energy E_e =60 GeV with polarization P =-0.8 .

Anomalous WWZ Couplings

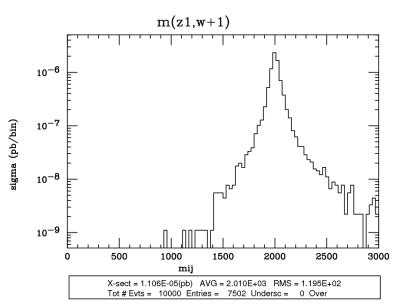
analysis of the signal and backgrounds

A. Senol, O. Cakir, I. Turk Cakirç

Sensitivities to anomalous couplings $\lambda_Z \sim 10^{-3}$

For comparison:

TABLE I THE AVAILABLE 95% C.L. TWO-PARAMETER BOUNDS ON ANOMALOUS COUPLINGS ($\Delta \kappa \gamma, \lambda \gamma$) and ($\Delta Kz, \lambda Z$) from the Atlas and CMS Experiments


	ATLAS	CMS	ATLAS (upper- lower)	CMS (upper- lower)	
Δκγ	-0.420,0.480	-0.250, 0.250	0.900	0.500	
λγ	-0.068,0.062	-0.050, 0.042	0.130	0.092	
$\Delta \kappa z$	-0.045,0.045	-0.160, 0.180	0.090	0.340	
λz	-0.063,0.063	-0.055, 0.055	0.126	0.110	

Two-dimensional 95% C.L contour plot of anomalous couplings in the $\lambda_Z - \Delta \kappa_Z$ plane for the integrated luminosity of 10fb-1 and 100 fb⁻¹ at FCC-ep with electron beam energy *Ee*=60 GeV with polarization *P*=-0.8.

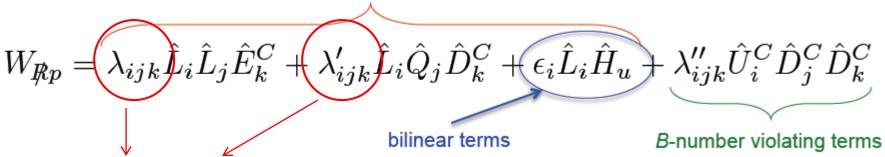
Vector Boson Scattering

2 TeV resonance

$$e^-q \rightarrow e^-(q)WZ$$
, $(vq)WZ$

Typical cross sections for 2 TeV resonance ($c_F=0$, $c_H=1$, $g_V=3$, 60 GeV x 50 TeV) Heavy Vector Triplet model, D. Pappadopoulo et al., JHEP 1409 (2014) 060, 1402.4431

- highly dependent on acceptance and performance of detector
- FCC-eh (2 TeV resonance): S = 0.01 fb, $B_{EW} = 100$ fb (for comparison, LHC14: S = 0.12 fb $B_{QCD} = 4.2$ pb $B_{EW} = 300$ fb)

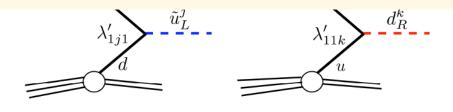

low cross section, but kinematics of signal distinct from background (invariant mass, rapidity of the objects, can use W/Z boosted hadronic decays)

→ Need very good detector performance

R-parity violating SUSY

Squarks in RPV models could be an example of 'Leptoquarks'

L-number violating terms

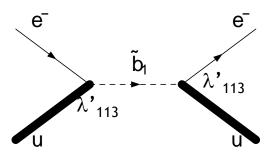


 ΔL =1, 9 λ couplings, 27 λ ' couplings Plethora of new couplings, only partially constraints (m/100 GeV)

Various strong constraints already from LHC on λ and λ " (from multilepton and multijet searches)

Couplings with third gen quarks
In e-p production rate depending on:

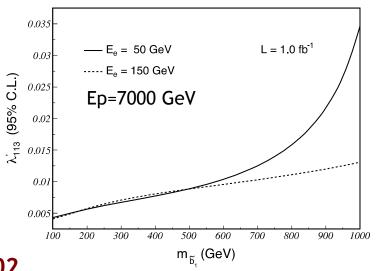
e-d-t: λ'_{131} (constraint: < 0.03) e-u-b: λ'_{113} (constraint: < 0.02) Very recently, H. Dreiner et al. released an extremely comprehensive review of the current constraints on LLE, LQD and UUD couplings https://arxiv.org/abs/1706.09418



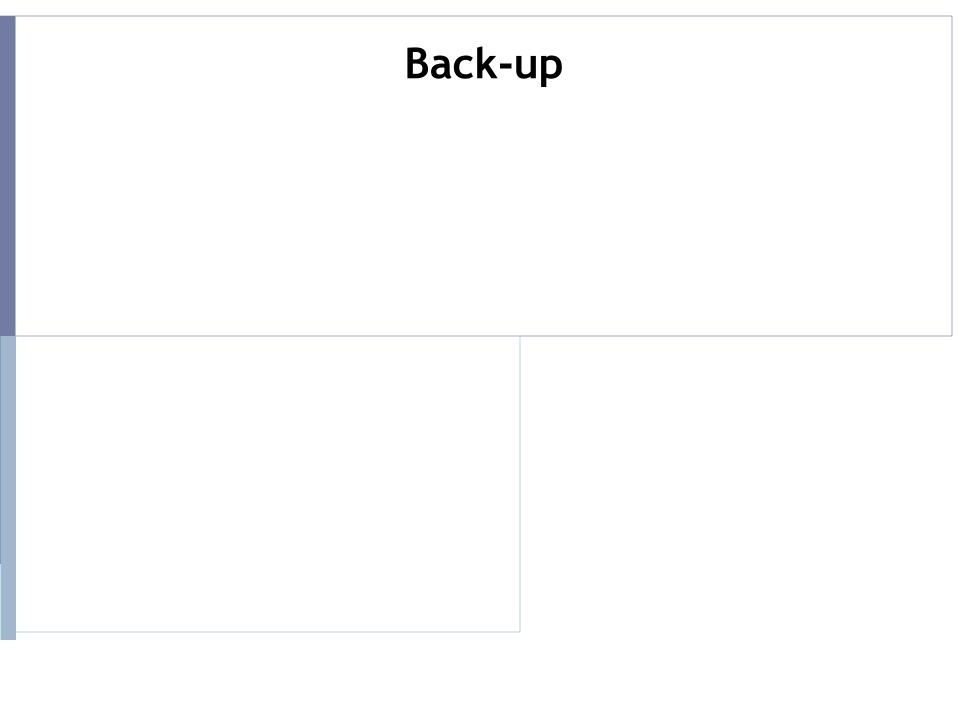
SUSY - R-parity violating

single sbottom/stop production (signal like leptoquarks, with generation mixing)

http://xxx.tau.ac.il/abs/1401.4266

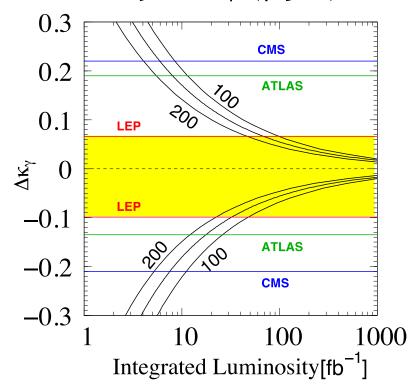

sbottom

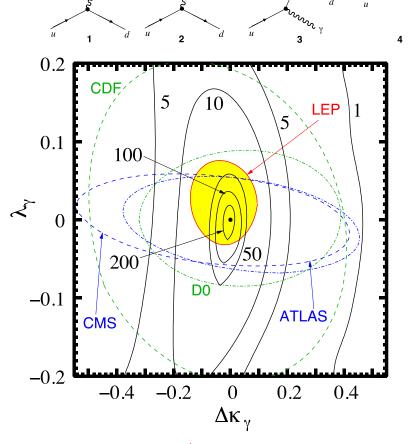
Probe RPV LQD terms: $(\lambda'_{113})^2$


@FCC-eh: same analysis as for LQ \rightarrow Sensitivity up to 2.5 TeV for λ'_{113} <0.02

Couplings	λ_{ijk}	λ'_{1jk}	λ'_{2jk}	λ'_{3jk}	$\lambda_{ijk}^{\prime\prime}$
Bound	0.49^{a}	0.09^{a}	0.59	1.1	0.5^{b}

 λ'_{113} can be more strongly constrained under certain assumptions. At the LHC, current constraints on other sparticles are tight but yet 'reasonable' and not on sbottom


$ ilde{\chi}_1^0 ext{ LSP region}$							$ ilde{ au}_1 \; \mathrm{LSP}$	region			
Coupling	$m_{ ilde{g}}$	$m_{ ilde{t}_1}$	$m_{ ilde{q}_{ m 1st/2nd}}$	$m_{ ilde{\chi}^0_1}$	$m_{\tilde{\chi}_1^{\pm}}$	$igg m_{ ilde{g}}$	$m_{ ilde{t}_1}$	$m_{ ilde{q}_{ m 1st/2nd}}$	$m_{ ilde{\chi}^0_1}$	$m_{\tilde{\chi}_1^\pm}$	$m_{ ilde{ au}_1}$
λ'_{113}	1410	780	1440	240	480	1580	1070	1430	290	560	220

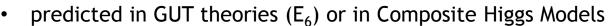


http://arxiv.org/pdf/1405.6056v1.pdf

Zmm,

- Select on p_T of γ and jet
- Sensitivity to $\Delta \phi$ (γ -jet)

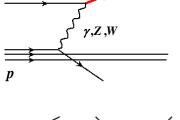
Competitive constraints at LHeC already for ~ 100 fb⁻¹

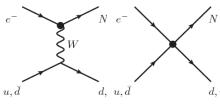

Can access a space inaccessible for LEP

(Note: $E(e)=100 \text{ GeV} \rightarrow \text{expect slightly worse for 60 GeV, but not much)}$

Heavy fermions/ colored bosons: covered in other talks

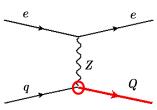
heavy leptons:


• vector-like leptons: left and right chiralities have same transform \underline{e} properties


- couplings: eEZ, vEW, eEH; vNZ, eNW, vNH
- Majorana Neutrino Production in an Effective Approach

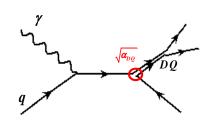
(L. Duarte et al. 1412.1433)
$$p\gamma \rightarrow \ell^+ + 3j + \nu \quad pe^- \rightarrow e^+ + 3j + 2\nu_e$$
 SM background from

able to discover Majorana neutrinos up to 700 GeV (for $E_e = 50$ GeV)


L.N

$$N \rightarrow \ell^+ + \text{ jets}$$

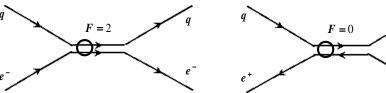
vector-like quarks


• single production of top partners, sensitive to couplings: qQZ, qQW, qQH (coupling to light quarks)

REMOVE ???

diquarks M Şahin and O. Çakir, arXiv:0911.0496

- predicted in superstring inspired E6 and composite models
- could carry charge 1/3, 2/3, 4/3 and be scalar or vector
- in gp production $\mathcal{L}_{|B|=2/3} = \left(g_{1L} \bar{Q}_L^c i \tau_2 Q_L + g_{1R} \bar{u}_R^c d_R\right) D Q_1^c + \text{h.c.}$


LHeC reach excluded

vector and scalar diquarks can be distinguished by the angular distribution of their decays

Measuring the LQ quantum numbers in e-p

- Quantum numbers and couplings:
 - o Fermion number:
 - can be obtained from asymmetry in single LQ production, since q have higher x than \overline{q}
 - At pp: very poor asymmetry precision achievable in single LQ production

$$A = \frac{\sigma_{e^{-}} - \sigma_{e^{+}}}{\sigma_{e^{-}} + \sigma_{e^{+}}} \begin{cases} > 0 \text{ for F=2} \\ < 0 \text{ for F=0} \end{cases}$$

- o spin
 - At p-p, pair production of LQ-LQ leads to angular distributions which depend on the g-LQ-LQ coupling

 → may need to look for spin correlations
 - At e-p, $\cos \theta^*$ distribution is sensitive to the spin
 - vector leptoquarks can have anomalous couplings
- o couple chirally (i.e. to L or R but not both)?
 - could be probed by measuring sensitivity of cross sections to polarization of the electron beam
- generation mixing?
 - does LQ decay to 2^{nd} generation? $e_L^- u_L \rightarrow S_3 \rightarrow v_e d_L$

$$e_L^- u_L \rightarrow S_3 \rightarrow v_e d_L$$

o BR to neutrino, good S/B in vj channel