BSM searches at FCC-eh (selected topics)

<u>Monica D'Onofrio</u> (University of Liverpool)

for the BSM ep team [coord. MD, Georges Azuelos]

1st FCC Physics Week January 19th 2017

Prelude

- The HL-LHC results will be crucial to re-focus the BSM program at the FCC in terms of
 - Characterization of hints for new physics if some excess or deviations from the SM are found
 - Constraints of new physics models and complementary searches wrt the hh/ee cases
 - Exploration of new scenarios
- Not an easy task at the moment
- Wish: engage the theory community!

Some examples at this meeting

 Heavy neutrinos (see Eros Cazzato's and Oliver Fischer's talks yesterday)

- (see poster M. Altinli et al.)
- Preonic models
 - Saleh Sultansoy's talk after this

Dashed lines denote the LHeC

FCC-hh able to

500

1000 1500 2000 2500 3000

M [GeV]

Outline

- Interesting BSM-eh cases made at this workshop
- In this talk I will hint a few more topics
 - Indirect impact on search potential for FCC-hh: improved PDF
 - Direct searches for BSM
 - Leptoquark
 - contact interactions
 - anomalous couplings (VVV)

continuing studies to get better precision on

Detector performance simulation in progress

- Vector Boson scattering
- SUSY: RPV and RPC
- Outlook and summary

HERA-LHeC-FCC-eh:

Monica D'Onofrio, 1st FCC physics week

1/19/2017

Indirect impact on search potential for FCC-hh: improved PDF

Improving PDFs with the LHeC

Impact on PDF → also depends on whether LHeC is realized or not

Monica D'Onofrio, 1st FCC physics week

high-x: very poorly constrained - limits

searches for new, heavy particles

Potential of FCCeh on PDFs

See Stefano and Voica's presentation

Impact of PDF: High mass Drell-Yan

 Non resonant searches for ED (interference) sensitive to tails of DY distributions thus to PDF. Predominantly q-qbar

Impact of PDF @ High x

- large uncertainties in high x PDFs limit searches for new physics at high scales many interesting processes at LHC are gluon-gluon initiated: top, Higgs, ... and BSM processes, such as gluino pair production
- For HL-LHC \rightarrow studied in detail impact of LHeC

Impact of PDF @ High x

- large uncertainties in high x PDFs limit searches for new physics at high scales many interesting processes at LHC are gluon-gluon initiated: top, Higgs, ... and BSM processes, such as gluino pair production
- For HL-LHC \rightarrow studied in detail impact of LHeC

Impact of PDF @ High x: FCC

- FCC-hh reach up to 13(16) TeV for gluino pair production, 17(20) TeV for nondecoupled squark/gluino for 3(30)/ab⁻¹
- Similar x range for the sensitive region
 (<x> ~ 0.4) → ~40-50% uncertainties on the
 prediction of gluon-gluon initiated processes
 - Might be an issue also for central values

Other aspects might play a non-negligible role: See also Stefano's talk

Top PDF: at the very high Q2, top becomes small and will have to be included as 6F PDFs

No doubts that having an e-p machine running in parallel with p-p will be very important

Direct searches at FCC-eh

Monica D'Onofrio, 1st FCC physics week

1/19/2017

LQ production

Leptoquarks (LQs) appear in several extensions to SM: production $\sigma \sim \lambda^2 q(x)$ can be scalar or vector, with fermion number 0 (e-qbar) or 2 (e-q)

- At the p-p, mostly pair production (from gg or qq)
 - if λ not too strong (0.3 or lower)

At the LHC, pair production is essentially independent of the LQ-q-e coupling $\lambda \rightarrow$ pair production abundant

 At the e-p: both baryon and lepton quantum numbers - ideally suited to search for and study properties of new particles coupling to both leptons and quarks

• single, resonant production; sensitive to λ

LQ status and reach at FCC -eh

1st generation LQs \rightarrow Current constraints almost there with 3.2/fb @ 13 TeV

a	Scalar LQ 1 st gen	2 e	≥ 2 j	-	3.2	LQ mass	1.1 TeV	eta=1
ГO	Scalar LQ 2 nd gen	2 μ	≥ 2 j	-	3.2	LQ mass	1.05 TeV	eta=1
	Scalar LQ 3 rd gen	$1 e, \mu$	≥1 b, ≥3 j	Yes	20.3	LQ mass	640 GeV	eta=0

Measuring the LQ quantum numbers in e-p

Quantum numbers and couplings:

- o Fermion number:
 - can be obtained from asymmetry in single LQ production, since q have higher x than \overline{q}
 - At pp: very poor asymmetry precision achievable in single LQ production

$$A = \frac{\sigma_{e^{-}} - \sigma_{e^{+}}}{\sigma_{e^{-}} + \sigma_{e^{+}}} \begin{cases} > 0 \text{ for F=2} \\ < 0 \text{ for F=0} \end{cases} \xrightarrow{F=2}^{q} \xrightarrow{q} \xrightarrow{F=0}^{q} \xrightarrow{F=0}^{q} \xrightarrow{e^{+}} \xrightarrow{e^{+}}$$

- o spin
 - At p-p, pair production of LQ-LQ leads to angular distributions which depend on the g-LQ-LQ coupling → may need to look for spin correlations

- At e-p, $\cos \theta^*$ distribution is sensitive to the spin
- vector leptoquarks can have anomalous couplings
- o couple chirally (i.e. to L or R but not both) ?
 - could be probed by measuring sensitivity of cross sections to polarization of the electron beam
- generation mixing? 0
 - does LQ decay to 2^{nd} generation? $e_L u_L \rightarrow S_3 \rightarrow v_e d_L$
- o BR to neutrino, good S/B in vj channel

Contact interactions

- if new physics enters at higher scales: $\Lambda >> J$ s
- such indirect signatures can be seen as effective 4-fermion interaction

$$\mathcal{L} = \frac{4\pi}{2\Lambda^2} j^{(e)}_{\mu} j^{\mu(q)}; \quad j^{(f=e,q)}_{\mu} = \eta_L \ \overline{f}_L \gamma_\mu f_L + \eta_R \ \overline{f}_R \gamma_\mu f_R + h.c.$$

 \Rightarrow all combinations of couplings $\eta_{ij} = \eta_i^{(e)} \eta_j^{(q)}; \quad q = u, d$

• may be applied very generally to new phenomena

```
A LQ mass >> √s
Planck scale (Ms) of extra dimensional models
compositeness scale
...
```

Sensitivity to fermion radius recalculated with current expectations at the FCC-eh

R → 3(1.5) x 10⁻²⁰m

pessimistic(optimistic) calculations

form factor: $f(Q^2) = 1 - \frac{1}{6} \langle r^2 \rangle Q^2$ $\frac{d\sigma}{d\Omega^2} = \frac{d\sigma_{SM}}{d\Omega^2} f_e^2(Q^2) f_q^2(Q^2)$

```
Monica D'Onofrio, 1st FCC physics week
```

Contact interactions (eeqq)

- New currents or heavy bosons may produce indirect effect via new particle exchange interfering with γ/Z fields.
- ▶ Reach for Λ (CI eeqq): VV: ~290 TeV; LL: ~160 TeV

~ equivalent sensitivity at the FCC-hh at least for some of the couplings (same as HL-LHC vs LHeC) but need more calculations!

E-p "specific" searches: Instantons

- New physics as non-perturbative QCD effect at high energies
 - Instantons → non-perturbative fluctuations of the gluon field
- Photon-gluon fusion process
- HERA recent results start probing interesting theoretical scenarios
- Feasibility could / should be considered for the future

BSM in Vector Boson (VB) scattering

VB scattering at high mass:

anomalous TGC, QGC couplings in VVV, VVVV ?

- New resonances possibly relevant for unitarity restoring
 - expect below ~ 2-3 TeV \rightarrow look for deviations from SM predictions:

 $e^{-}q \rightarrow e^{-}(q)WZ, \quad (\nu q)WZ$

Challenging at p-p (high QCD bkg, pile-up), cleaner at FCC-eh

Anomalous couplings WWV

> Triple gauge boson vertices WWV, $V=\gamma$, Z:

- Precisely defined in SM
- Parametrise possible new physics contributions to this vertex $(\Delta \kappa_{\gamma}, \lambda_{\gamma})$
- Current constraints (best from LEP) use various assumptions

	LEP [9]	CDF [12]	D0 [<mark>13</mark>]	ATLAS [10]	CMS [11]
$\Delta \kappa_{\gamma}$	[-0.099, 0.066]	[-0.460, 0.390]	[-0.158, 0.255]	[-0.135, 0.190]	[-0.210, 0.220]
λ_{γ}	[-0.059, 0.017]	[-0.180, 0.170]	[-0.036, 0.044]	[-0.065, 0.061]	[-0.048, 0.037]

Table 1: Allowed ranges, at 95% C.L., on the anomalous $WW\gamma$ couplings from the data collected at the LEP, Tevatron and LHC experiments. In each case, the most restrictive of the reported measurements is taken.

http://arxiv.org/pdf/1405.6056v1.pdf

At the e-p:

https://arxiv.org/abs/1406.7696

- can clearly distinguish between CC events $e + p \rightarrow ve + jet$ (W-exchange) and NC events $e + p \rightarrow e + jet$ (photon or Z boson exchange)
- triggering on a final state photon, can provide very clean bounds on the anomalous TGV's!

FCC-eh Anomalous WW γ and WWZ Couplings

- Study for FCC-eh
- https://cds.cern.ch/record/2209389/?ln=en
 - Report studies for Ee = 80 GeV
 - Update here for Ee = 60 GeV

A. Senol, O. Cakir, I. Turk Cakirç

Anomalous WWy Couplings

A. Senol, O. Cakir, I. Turk Cakirç

Two dimensional 95% C.L contour plot anomalous couplings in the λ_{γ} - $\Delta \kappa_{\gamma}$ plane for the integrated luminosity of 10 fb-1 and 100 fb-1 at FCC-ep with electron beam energy E_e =60 GeV with polarization P =-0.8.

Anomalous WWZ Couplings

Two-dimensional 95% C.L contour plot of anomalous couplings in the $\lambda_z - \Delta \kappa_z$ plane for the integrated luminosity of 10fb-1 and 100 fb⁻¹ at FCC-ep with electron beam energy *Ee*=60 GeV with polarization *P*=-0.8.

Vector Boson Scattering

Typical cross sections for 2 TeV resonance (c_F=0, c_H=1, g_V=3, 60 GeV x 50 TeV) Heavy Vector Triplet model, D. Pappadopoulo et al., JHEP 1409 (2014) 060, <u>1402.4431</u>

- highly dependent on acceptance and performance of detector
- FCC-eh (2 TeV resonance): S = 0.01 fb, $B_{EW} = 100$ fb (for comparison, LHC14: S = 0.12 fb $B_{QCD} = 4.2$ pb $B_{EW} = 300$ fb) low cross section, but kinematics of signal distinct from background (invariant mass, rapidity of the objects, can use W/Z boosted hadronic decays)
- \rightarrow Need very good detector performance

1/19/2017

R-parity violating SUSY

Squarks in RPV models could be an example of 'Leptoquarks'

bilinear terms

B-number violating terms

 ΔL =1, 9 λ couplings, 27 λ ' couplings

Plethora of new couplings, only partially constraints (m/100 GeV)

	$\lambda_{ijk}L_iL_j\bar{E}_k$	$\lambda_{1jk}' L_1 Q_j \bar{D}_k$	$\lambda'_{2jk}L_2Q_j\bar{D}_k$	$\lambda'_{3jk}L_3Q_j\bar{D}_k$
weakest	0.07	0.28	0.56	0.52
strongest	0.05	$5. \cdot 10^{-4}$	0.06	0.11

Various strong constraints already from LHC on λ and λ " (from multilepton and multijet searches)

Couplings with third gen quarks In e-p production rate depending on: e-d-t: λ'_{131} (constraint: < 0.03) e-u-b: λ'_{113} (constraint: < 0.02)

SUSY - R-parity violating

single sbottom/stop production (signal like leptoquarks, with generation mixing)

A "different" SUSY RPV: Single-top + neutralino

Studies carried out in the past (for LHeC) shows potentially interesting signatures → resonant / non-resonant top+neutralino production

http://arxiv.org/pdf/1307.2308v2.pdf

Could lead to interesting discovery e.g. neutralinos decays in RPV scenarios

SUSY RPV in Higgs Sector

In addition to the higgs to invisible and higgs to 4b, there are several other RPV cases to be considered. E.g.

$$h \rightarrow \chi_1^0 \chi_1^0 \rightarrow 3j \, 3j \, (\text{resonances})$$

Neut1 might decay in 3 jets (UDD terms)

 $h \rightarrow \chi_1^0 \chi_1^0 \rightarrow jjjjvv$ (non-resonant, with MET)

- Neut1 might decay also in lepton+neutrinos (LLE terms)
 - Prompt or delayed: displaced vertex doable but not yet explored

Some statistics: N_exp = L × $\sigma(h)$ × BR($h \rightarrow \chi_1^0 \chi_1^0$) × [BR($\chi_1^0 \rightarrow X$)]² In 1/ab, $\sigma(h)$ =850 fb (CC), assuming BR($h \rightarrow \chi_1^0 \chi_1^0$) = 10% N exp = 85000 × [BR($\chi_1^0 \rightarrow X$)]² \rightarrow sizable dataset if BR not too small

Hopes for RPC SUSY? EWK RPC

- Charginos (C) and Neutralinos (N) fundamental for SUSY
 - Expected to be light in most scenarios (C1, N1, N2 in particular)
 - N1 is often the LSP and one of the preferred DM candidate
- One of the most difficult scenarios for the p-p: medium-compressed N1, C1, N2 (DM few GeV)
 - Not visible in direct searches, mono-photon and mono-jet searches possibly not sensitive because of systematic uncertatinties VS tiny xsect.
 - VBF scenarios investigated for 14 TeV LHC

 $pp \rightarrow \tilde{\chi}^0_1 \, \tilde{\chi}^0_1 \, jj, \ \tilde{\chi}^\pm_1 \, \tilde{\chi}^\mp_1 \, jj, \ \tilde{\chi}^\pm_1 \, \tilde{\chi}^0_1 \, jj$

50 fb xsection for pure Winolike N1

Promising for low N1, but possibly large bkg from SM (ie Z,higgs production)

EWK RPC-SUSY production

- Question: can anything be done at the FCC-eh?
- Production of monojet-like signatures \rightarrow not feasible
- Production of the kind $e+j+MET \rightarrow possible$
- First look, using Madgraph:

- Example of diagram for C1C1. Production of N1N1 and C1N2 equivalent for almost degenerate masses
- Coupling strenghts depend on the Wino-Higgsino mixture

FCC-eh (Ep = 50 TeV, Ee = 60 GeV with no polarization).

Benchmark point: pure Wino DM: M2 ~ 200 GeV; M1, \mu >> M2; m(neutrino1) ~ m(chargino1) ~ 200 GeV.

```
MadGraph generating:

"import model mssm-full

define dm = n1 n2 x1+ x1-

generate p e- > dm dm e- j / go ul cl t1 ur cr t2 dl sl b1 dr sr b2 ul\

~ cl~ t1~ ur~ cr~ t2~ dl~ sl~ b1~ dr~ sr~ b2~ h2 h3 h+ h- sve svm svt\

el- mul- ta1- er- mur- ta2- sve~ svm~ svt~ el+ mul+ ta1+ er+ mur+ ta2\

+ n3 n4 x2+ x2- QCD=0 QED=4 "
```

will use P=-0.8 for next round

EWK RPC-SUSY production

- Question: can anything be done at the FCC-eh?
- Production of monojet-like signatures \rightarrow not feasible
- Production of the kind $e+j+MET \rightarrow possible$
- Polarization -0.8 lead to a 30% increase in x-sections, which are anyway small:

SUSY EWK production

 σ (Wino 200 GeV, P=0.0) = 3 fb

Bkg: j e MET including W/Z processes

Basic selections on pT jets, electron, eta range: signal and background 'efficiency' → eff_S = 25%, eff_B = 0.04%

 $\begin{array}{l} \mbox{MET>100 GeV, MT(met, j)>150 GeV,} \\ \mbox{Dphi(MET, jet)> 3, Dphi (e, j)<2, MT(MET, j+e) $$ \rightarrow eff_S = 15\%, eff_B = 0.02\% $$ \end{array}$

Simple cut-and-count analysis based on 'TRUTH' studies lead to a signal significance >= 1 with 1000/fb (fake-MET bkg also missing)

MVA analyses would be beneficial (as in $h \rightarrow Inv$ case, see Uta's talk)

2000 Just started but worth investigating

Summary and outlook

- FCC-eh offers a variety of opportunities for BSM searches
- Crucial interplay in the context of PDF sets (@ high and low x)
- Ideal to search and study properties of new particles with couplings to electron-quark
- Nice prospects for "classic" searches on leptoquarks, contact interactions, anomalous couplings and RPV/RPC SUSY
 - Some promising, some difficult
- Physics potential yet to be fully exploited
 - ► Engagement from theory community is really important → leading to very interesting results where it started!
 - Detector-level studies crucial for next phase

Back-up

Competitive constraints at LHeC already for ~ 100 fb⁻¹ Can access a space inaccessible for LEP (Note: $E(e)=100 \text{ GeV} \rightarrow expect$ slightly worse for 60 GeV, but not much)

Monica D'Onofrio, 1st FCC physics week

1/19/2017

Heavy fermions/ colored bosons: covered in other talks

heavy leptons:

- vector-like leptons: left and right chiralities have same transform <u>e</u> properties
 - predicted in GUT theories (E₆) or in Composite Higgs Models
 - couplings: eEZ, vEW, eEH; vNZ, eNW, vNH
- Majorana Neutrino Production in an Effective Approach

(L. Duarte et al. 1412.1433) $p\gamma \rightarrow \ell^+ + 3j + \nu \quad pe^- \rightarrow e^+ + 3j + 2\nu_e$ SM background from

able to discover Majorana neutrinos up to 700 GeV (for $E_e = 50$ GeV)

vector-like quarks

• single production of top partners, sensitive to couplings: qQZ, qQW, qQH(coupling to light quarks)

 $N \rightarrow \ell^+ + \text{ jets}$

L.N

γ,Z,W

diquarks M Şahin and O. Çakir, arXiv:0911.0496

- predicted in superstring inspired E6 and composite models
- could carry charge 1/3, 2/3, 4/3 and be scalar or vector
- in gp production $\mathcal{L}_{|B|=2/3} = \left(g_{1L}\overline{Q}_L^c i \tau_2 Q_L + g_{1R}\overline{u}_R^c d_R\right) D Q_1^c + \text{h.c.}$

LHeC reach excluded

vector and scalar diquarks can be distinguished by the angular distribution of their decays