BSM Physics @ ep Colliders

Co-author: Monica D'Onofrio & Georges Azuelos Presenter: <u>Kechen Wang</u> (DESY) on behalf of the LHeC/FCC-eh BSM Physics Group

> 2nd FCC Physics Workshop, CERN Jan. 17, 2018

Outline

★ Indirect impact from improved PDF

★ Direct Searches

- BSM Higgs: invisible decay; H->4b, H->multi-j, H+, H++
- SUSY: DM, sleptons
- Anomalous gauge couplings: VVV, VVVV updated
- Leptoquarks: RPV SUSY squarks, limits, quantum # & couplings; B anomaly (LHCb); 1-page
- Contact interactions: eeqq (very heavy LQ, compositeness)
- ✦-Vector boson scattering
- ✦-BSM in the top sector
- Sterile neutrinos

★ Outlook & Summary

More details,

see [Monica D'Onofrio's talk "BSM searches at FCC-eh (*selected topics*)" in the 1st FCC Physics week, <u>https://indico.cern.ch/event/550509/contributions/2413829/attachments/1398547/2133088/FCCPhysics_BSMJan2017.pdf</u>] & [Kechen Wang's talk "BSM Physics at Energy-frontier Lepton-hadron Colliders" in the EPS-HEP Conference 2017, <u>https://indico.cern.ch/event/466934/contributions/2583549/attachments/1489690/2314998/EPS-HEP_BSM_at_ep_colliders_2.pdf</u>]

Aim of this talk:

- \rightarrow List promising topics
- \rightarrow show progress of BSM studies @ ep;
 - focus on just updated one's / recent studies;
- \rightarrow Encourage more future studies

Outline

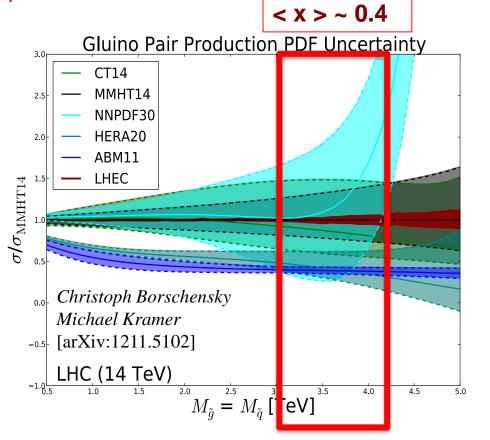
★ Indirect impact from improved PDF

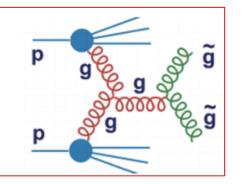
★ Direct Searches

- BSM Higgs: exotic (invisible) decay; H->4b, H⁺, H⁺⁺
- RPC SUSY: DM, sleptons
- RPV SUSY: neutralinos, squarks
- ◆ Anomalous gauge couplings: VVV, VVVV updated
- Leptoquarks: limits, quantum # & couplings;
- Contact interactions: eeqq (very heavy LQ, compositeness)
- ✦-Vector boson scattering
- ←-BSM in the top sector [Christian Schwanenberger, "Top physics in ep"]
- ◆-Sterile neutrinos [Oliver Fischer's talk "Heavy neutrino discovery prospects at FCC"]

★ Outlook & Summary

- Ideal to search and study properties of new particles with


 -> couplings to electron-quark / vector bosons, EW / VBF production, multi-jets final states
- ★ Compared with *pp* colliders
 - → Some promising: clean environment (samller bkg, low pileup), forward objects
 - → Some difficult: small production due to small \sqrt{s}


Indirect Impact on BSM from Improved PDF

Example: gluon-gluon initiated processes

 \rightarrow large uncertainties in high-x PDFs limit searches for new physics at high scales

→ many interesting processes at LHC are gluon-gluon initiated: top, Higgs, ... and BSM processes, such as gluino pair production

comment on [Claire Gwenlan's talk "PDFs at the FCC-eh"], before

At HL-LHC,

~ 40-50% uncertainties on the gluongluon initiated gluino production cross section in high-x region.

At FCC-hh,

Similar x range for sensitive region => reducing PDF uncertainties by ep might be crucial to improve the pp limits.

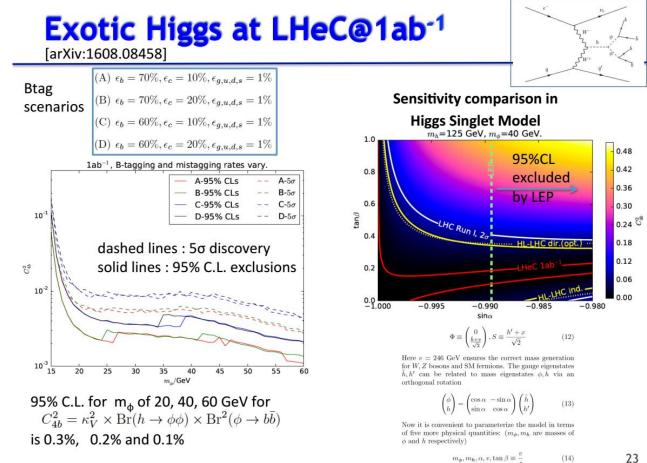
> Higgs invisible decays

* $h \rightarrow invisible$, [Uta Klein's talk "Higgs SM Couplings at FCC-ep"]

> Higgs exotic decays

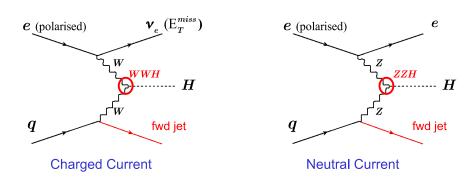
$$\stackrel{\bigstar}{\bullet} h \to 2\phi \to (b\overline{b})(b\overline{b}) \\ \stackrel{\bigstar}{\bullet} h \to \tilde{\chi}_1^0 \, \tilde{\chi}_1^0 \to (3j)(3j) \text{ in RPV SUSY }$$

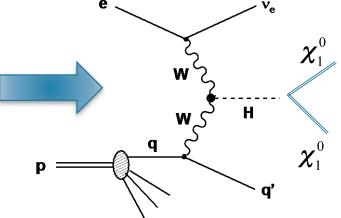
> Charged Higgs


♦ H^+ , in 2HDM type III, $p e^- \rightarrow \nu j H^+ \rightarrow \nu j (c\overline{b})$,

[J. Hernández-Sánchez, etc. 1612.06316]

• $H^{\pm\pm}$, H^{\pm} in Vector Boson Scattering


$h \to 2\phi \to (b\overline{b})(b\overline{b})$


[Slide from Uta Klein]

23

$h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow (3j)(3j)$ in RPV SUSY

- In addition to the higgs to invisible and higgs to 4b, there are several other RPV cases to be considered. E.g.
 - Neutralino might decay in 3 jets (UDD terms)

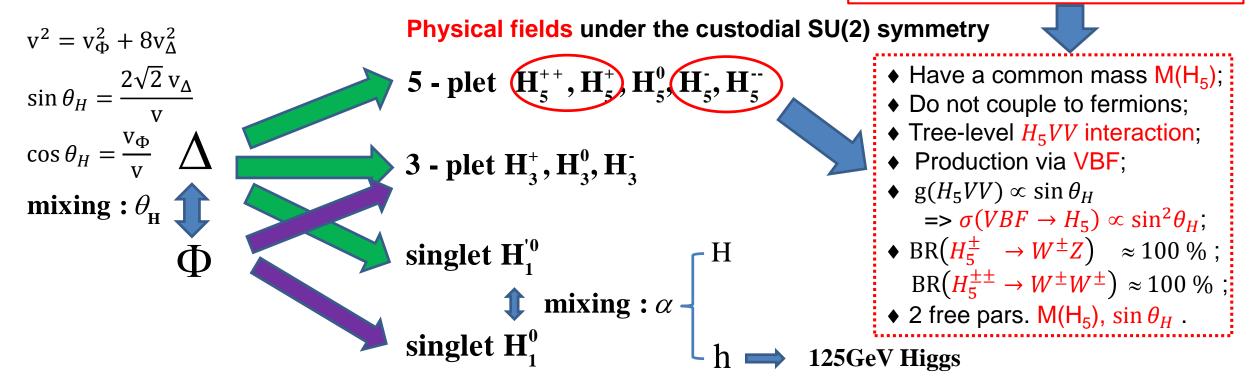
 $h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow 3j \, 3j \, (\text{resonances})$

Some statistics: $N_{exp} = L \times \sigma_h \times BR(h \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) \times [BR(\tilde{\chi}_1^0 \to jjj)]^2$ In 1 ab⁻¹, σ_h =850 fb (CC), assuming $BR(h \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10\%$ $N_{exp} = 85000 \times [BR(\tilde{\chi}_1^0 \to jjj)]^2$ \to sizable dataset if $BR(\tilde{\chi}_1^0 \to jjj)$ not too small

BSM Higgs Georgi – Machacek (GM) Model

Scalar sector of the GM model:

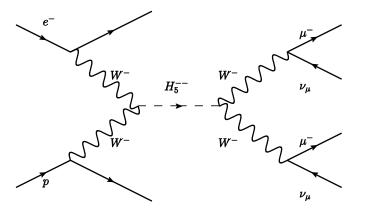
complex isospin doublet (ϕ^+, ϕ^0) with hypercharge Y=1; real triplet (ξ^+, ξ^0, ξ^-) with Y=0; complex triplet $(\chi^{++}, \chi^+, \chi^0)$ with Y = 2;

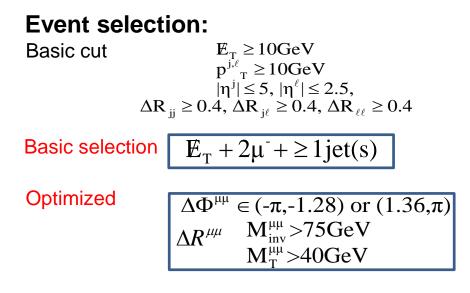

→ Scalar potential is chosen to preserve a global SU(2)_L × SU(2)_R symmetry

```
Using SU(2)<sub>L</sub>×SU(2)<sub>R</sub> covariant forms of the fields:

\begin{pmatrix} \phi^{0^*} & \phi^+ \end{pmatrix} \begin{pmatrix} \chi^{0^*} & \xi^+ & \chi^{++} \end{pmatrix}
```

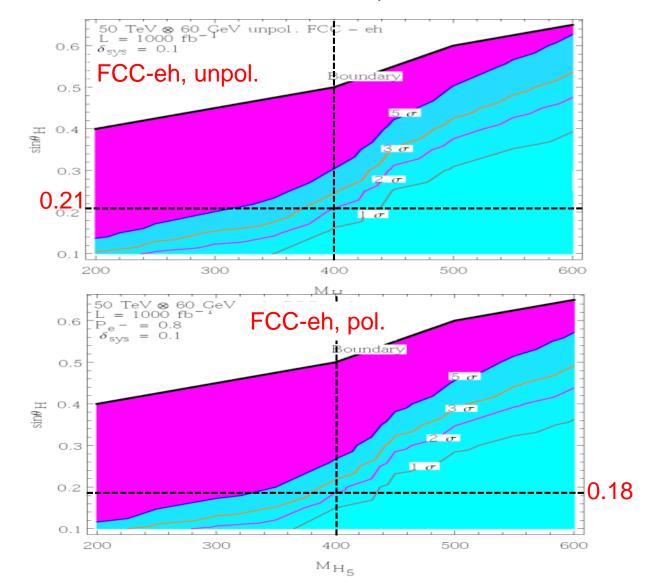
$$\Phi = \begin{pmatrix} \varphi & \varphi \\ \phi^{-} & \phi^{0} \end{pmatrix} \qquad \Delta = \begin{pmatrix} \chi^{-} & \xi^{0} & \chi^{+} \\ \chi^{--} & \xi^{-} & \chi^{0} \end{pmatrix}$$


Signatures of the five-plet in GM model: [H. Logan, M. Zaro, LHCHXSWG-2015-001]


Double charged Higgs $H^{\pm\pm}$

Signal via WW-fusion in the Georgi-Machacek model $p \ e^- \rightarrow j \ \nu_e \ (H_5^{--} \rightarrow W^- W^-) \rightarrow j \ \nu_e \ (\mu^- \ \nu_\mu) (\mu^- \ \nu_\mu)$

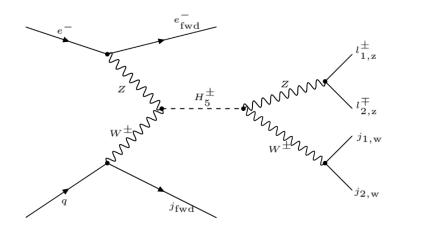
Final state: \geq 1 j + 2 μ^- + MET



Simulation by "MadGraph + PYTHIA + Delphes".

BSM Higgs

[study by H. Sun, X. Luo, W. Wei and T. Liu] **Significances** in $\sin \theta_H$ vs. M_{H_5} Plain $\rightarrow Lum = 1$ ab⁻¹, systematic uncertainty $\sigma_{sys} = 10\%$

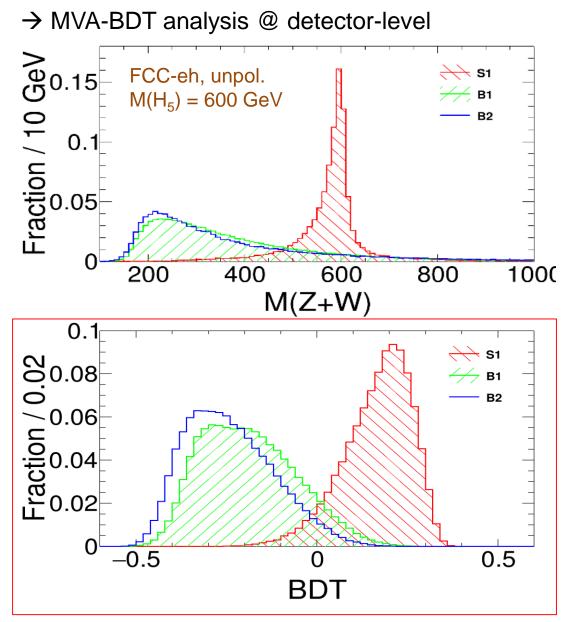


Signal Scenarios for H_5^{\pm} Search [Georges Azuelos, Hao Sun, and Kechen Wang, 1712.07505]

Collider: FCC-eh & LHeC

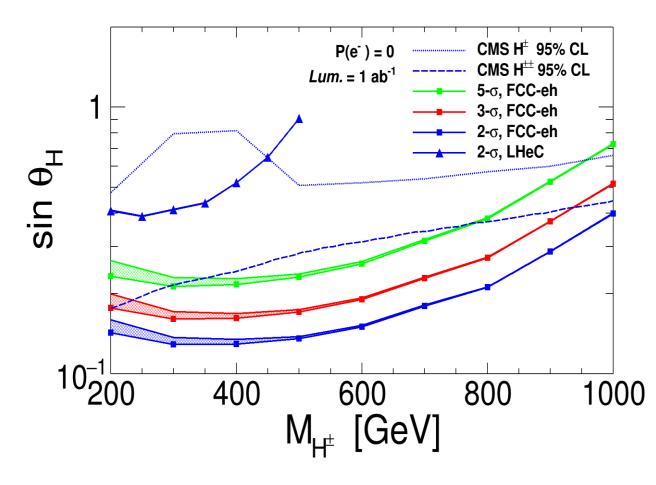
Signal:

Production of H_5^+ & H_5^- in the Georgi – Machacek Model \rightarrow Final state: 1 e⁻ + 1 j + 1 Z(-> *l*⁺ *l*) + 1 W(-> j j); *l* = e, μ .



SM Background B1: $p e^{-} > j e^{-} Z V, V \rightarrow jj$ B2: $p e^{-} > j e^{-} Z jj$, jets from QCD radiation

Signal production cross section


 $p e^{-} \rightarrow j e^{-} H_5^{\pm}, (H_5^{\pm} \rightarrow Z W^{\pm})$

Limits for H_5^{\pm} Search

 \rightarrow 10% systematic uncertainty on background included

R-Parity Conserving SUSY

Dark matter via kinematical observables

Preliminary results from [Kechen Wang, Sho Iwamoto, Monica D'Onofrio, Georges Azuelos]

Collider:

FCC-eh (Ep = 50 TeV, Ee = 60 GeV).

Motivations:

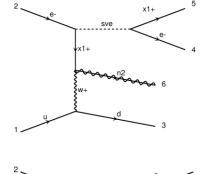
(a) Compressed Scenarios:

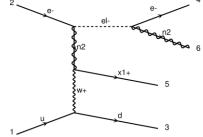
decay products are very soft, challenging at pp colliders.

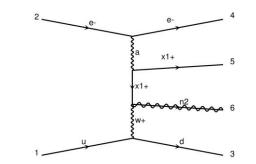
(b) Light sleptons:

Can be motivited by the "muon g-2"

DM production can be enhanced by the slepton decays.

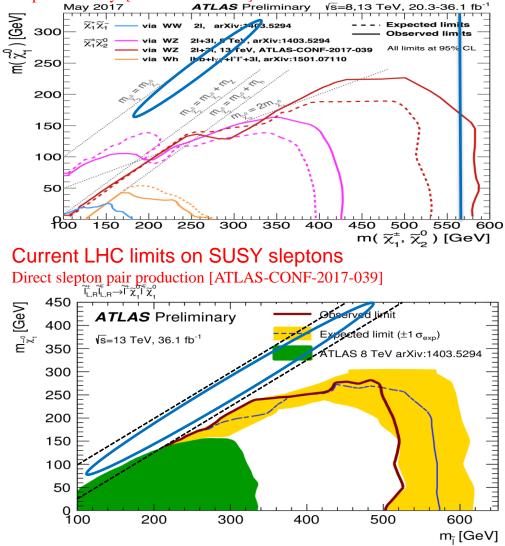

Signal scenarios:

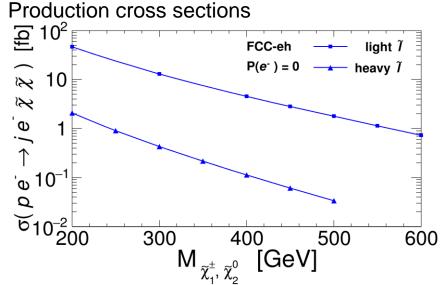

Bino: m_{neutralino1}; Wino: m_{chargino1} = m_{neutralino2} = m_{neutralino1} + 1 GeV;


(1) Light slepton scenario

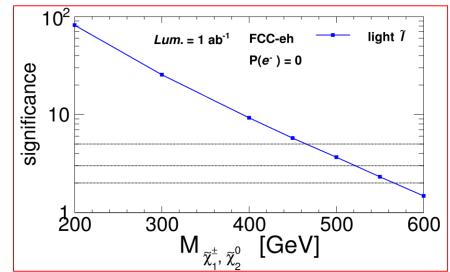
Slepton: m_{slepton_L} = m_{chargino1} + 35 GeV; Sneutrino: m_{sneutrino} ~ m{slepton_L} - 9 GeV (tan β = 30) BR(slepton -> neutralino2,1 e-): 40% BR(sneutrino -> chargino1 e-): 60%

(2) Heavy slepton scenario Slepton & Sneutrino: Heavy and decoupled.



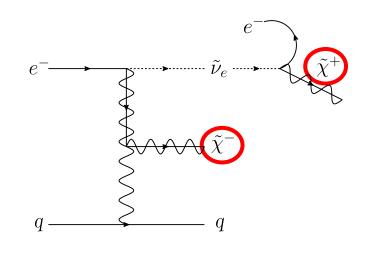


R-Parity Conserving SUSY Dark matter via kinematical observables


Preliminary results from [K. Wang, S. Iwamoto, M. D'Onofrio, G. Azuelos], should be updated Current LHC limits on SUSY DM:

Slepton is heavy [arXiv:1509.07152]: May 2017 ATLAS Pre

Limits via MVA-BDT analysis @ detector-level

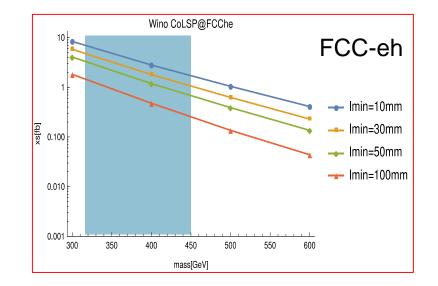


R-Parity Conserving SUSY

DM & Sleptons via disappearing tracks Long-lived charged particles with $c\tau > 10$ mm

Simplest models at FCC-eh:

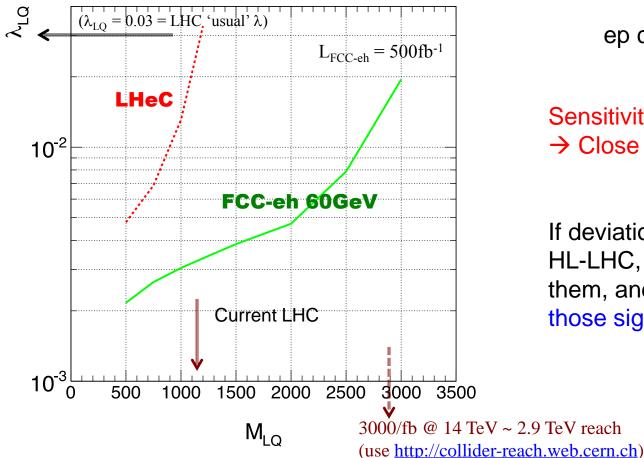
→ Cross section enhanced with "3-body production"



 \rightarrow More scenarios are in progress.

comment on [Kaustubh Deshpande's talk "LLPs at FCC"], before based on [slide from Sho Iwamoto]

Simple efficiency analysis


- \rightarrow Requiring minimal detection length I_{min}
- \rightarrow Charginos (Wino) with selectron

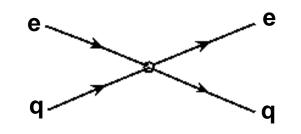
With no polarization; $m_{{ ilde e}_{
m L}}=m_{{ ilde \chi}_1^0}+{
m 9~GeV}$

Leptoquarks

Limits of Leptoquarks

B anomaly (LHCb); 1-page

ep collider: sensitive to $\lambda < 0.03$

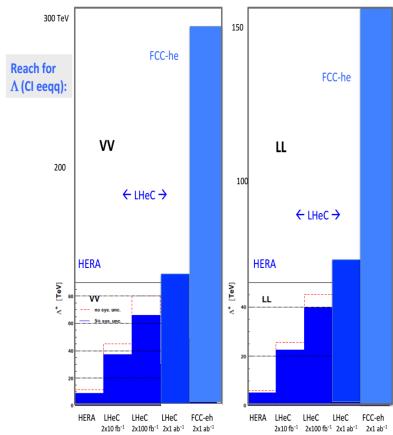

Sensitivity @ HL-LHC ~ 2.9 TeV \rightarrow Close to the reach for FCC-eh

If deviations are found by the end of HL-LHC, FCC-hh will definitely see them, and FCC-eh can characterize those signals !

=> LHeC / FCC-eh offer opportunity to evaluate quantum numbers & couplings (fermion number, spin, couple chirally, ...)

Contact Interactions

Contact interaction eeqq


- if new physics enters at higher energy scales: $\Lambda >> \sqrt{s}$
- such indirect signatures can be seen as effective 4-fermion interaction

- New currents or heavy bosons may produce indirect effect via new particle exchange interfering with γ/Z fields.
- Reach for Λ

 \rightarrow VV: ~290 TeV; LL: ~160 TeV [LHeC results: see CDR 2012]

- → comparable to FCC-hh for some of the couplings
 → same as HL-LHC vs LHeC
- → need more calculations !

VV: all couplings with +ve sign LL: only LL couplings between *q* and *e*

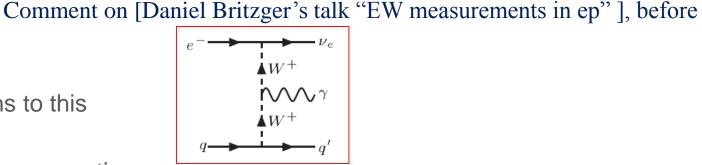
Anomalous Gauge Couplings

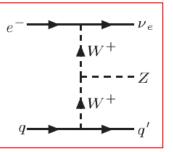
Triple Gauge Couplings (WWV, $V = \gamma$, Z)

 \rightarrow Precisely defined in SM

→ Parameterize possible new physics contributions to this vertex ($\Delta \kappa_{\gamma}, \lambda_{\gamma}$)

 \rightarrow Current constraints (best from LEP) use various assumptions

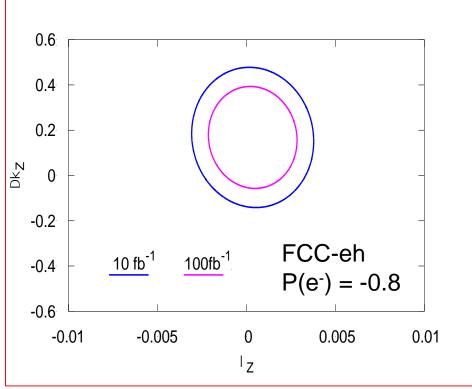

	LEP [9]	CDF [12]	D0 [13]	ATLAS [10]	CMS [11]
$\Delta \kappa_{\gamma}$	[-0.099, 0.066]	[-0.460, 0.390]	[-0.158, 0.255]	[-0.135, 0.190]	[-0.210, 0.220]
λγ	[-0.059, 0.017]	[-0.180, 0.170]	[-0.036, 0.044]	[-0.065, 0.061]	[-0.048, 0.037]


Table 1: Allowed ranges, at 95% C.L., on the anomalous WWγ couplings from the data collected at the LEP, Tevatron and LHC experiments. In each case, the most restrictive of the reported measurements is taken.

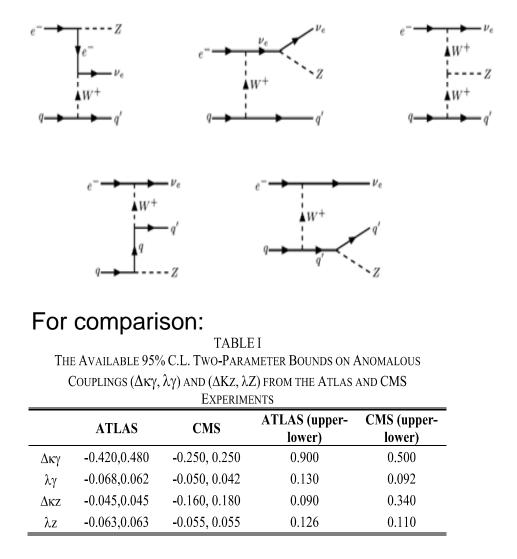
[http://arxiv.org/pdf/1405.6056v1.pdf] [https://arxiv.org/abs/1406.7696]

At the e-p:

- → can clearly distinguish between CC events $e + p \rightarrow v_e + jet$ (W-exchange) and NC events $e + p \rightarrow e + jet$ (photon or Z boson exchange)
- → triggering on a final state photon, can provide very clean bounds on the anomalous TGC's !



Anomalous Gauge Couplings


Triple Gauge Couplings (WWV, $V = \gamma$, Z)

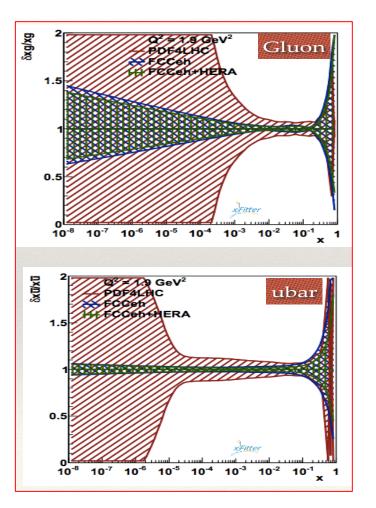
[A. Senol, O. Cakir, I. Turk Cakir]

Analysis of the signal & backgrounds for $Z \rightarrow II'(I = e, \mu)$

Sensitivities to anomalous couplings λ_Z ~ 10^{-3}

Complementary between ep and pp

From [Georges Azuelos and Monica D'Onofrio]


Compositeness	 4-fermion EFT: Lepton-quark compositeness scale Quark radius 	
Leptoquarks and RPV squark decay	 Accessible range largely excluded, but not completely Better measure of LQ characteristics, if they exist 	
Anomalous Triple Gauge Couplings	Comparable to LHC	
Top FCNC couplings	 tuγ,tcγ,tuH couplings 	
Vector-like leptons, heavy/excited leptons, bileptons, higher isospin lepton multiplets	 No constraints on VLL, so far, at LHC Extend sensitivity to eγ for lower masses 	
Heavy neutrinos, Majorana neutrinos, sterile neutrinos	Symmetry-protected see-saw model	
SUSY EW: compressed scenario, Higgsino, (dark sector)	Long-lived neutral particlesDisppearing tracks	
Anomalous Quartic Gauge Couplings	• Better control on background: no gluon exchange diagrams (mostly FCC?)	
Extended Higgs sector: higher isospin multiplet	• Singly- and doubly- charged higgs by VBF (mostly FCC)	

Summary & Outlook

- ★ ep offers a variety of opportunities for BSM searches
 → precision measurements, complementary searches; distinguishing & characterization new physics theories;
- ★ Improving pp limits indirectly by improved PDF (@ high and low x)
- ★ Fruitful BSM physics scenarios:
 - → Leptoquarks, Contact interactions, Anomalous gauge couplings, Vector boson scattering, BSM top physics, SUSY (RPV & RPC), BSM Higgs, Sterile neutrinos...
- ★ Ideal to search and study properties of new particles with
 → couplings to electron-quark, EW production, multi-jets final states
- ★ Compare with pp colliders
 - → Some promising: clean environment (samller bkg), forward objects
 - \rightarrow Some difficult: small production due to small sqrt(s)
- ★ Physics potential yet to be fully exploited
 - \rightarrow Detector-level studies crucial for next phase
 - \rightarrow You are welcome to join our team !!!

Backup Slides

Improved PDF Measurements @ LHeC & FCC-eh

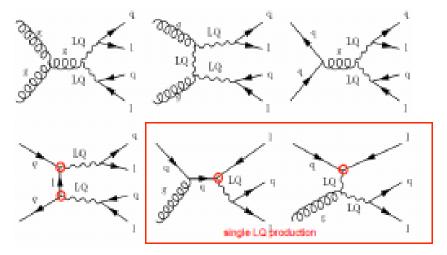
- → low-x: no current data to constrain $x \le 10^{-4}$; better but not much after HL-LHC;
- \rightarrow mid-x: need higher precision for Higgs
- → high-x: very poorly constrained; limits searches for new, heavy particles

→ FCC-eh: access to much smaller x, larger Q^2 → important for the FCC-hh as it will probe much lower x regions for standard processes

Searches to be followed in a nutshell

From [Georges Azuelos and Monica D'Onofrio]

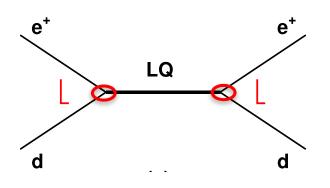
Analysis + Target	People	Status	Overlap
Contact Interaction and quark radius (LHeC/FCC)	To be defined, looking for people who did this for HERA	Must redo previous studies	-
Leptoquarks (LHeC/FCC)	GA did initial studies	Ready at particle level, more needed ?	-
SUSY EWK prompt (LHeC/FCC)	Kechen, Sho, MD, GA	In progress - paper in preparation	-
SUSY EWK LLP (LHeC/FCC)	Kechen, Sho, MD, GA	In progress - paper in preparation	-
SUSY EWK higgsino - LLP (LHeC/FCC) disappearing tracks	Oliver Fischer, Jose Zurita, David Curtin	In progress - paper in preparation	-
Heavy neutrinos (FCC only?)	Oliver Fischer, Jose Zurita, David Curtin	In progress - paper in preparation	
Vector-like leptons/ doubly-charged leptons (LHeC/FCC)	O. Cakir et al.	starting	-
Anomalous couplings EWK aTGC(LHeC+FCC) and aQGC(FCC)	Orhan Cakir et collaborators	In progress - update of the paper in preparation	Maybe SM EWK ?
(2) Top Anomalous couplings / FCNC (LHeC/FCC)	O Cakir et al. and Hao Sun	In progress / 2 different studies	Top&Higgs group
(2) BSM Higgs - H+ and H++ (FCC mostly)	GA, Kechen, Hao Sun (BSM) + James H, Hao (Higgs)	In progress (2 kind of studies - targeting different models)	Top&Higgs group
Instantons (LHeC/FCC)	Simone Amoroso	starting	QCD/SM


Leptoquarks

Leptoquarks (LQs)

→ appear in several extensions to SM: production s ~ $\lambda^2 q(x)$

→ can be **scalar** or **vector**, with fermion number 0 (e^{-} qbar) or 2 (e^{-} q)

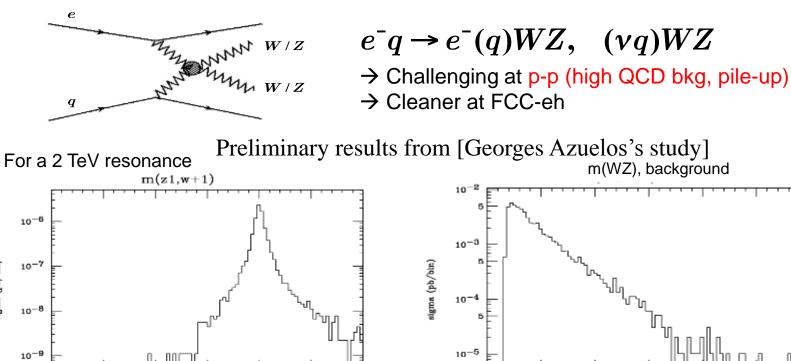

At the p-p

→ mostly pair production (from gg or qq) → not sensitive to the LQ-q-l coupling \lfloor

At the e-p

→ both baryon & lepton quantum numbers
 → ideally suited to search for and study
 properties of new particles coupling to both
 leptons and quarks

→ single, resonant production
→ sensitive to [


Vector Boson Scattering

New resonances possibly relevant for unitarity restoring

→ expect below ~ 2-3 TeV

sigma (pb/bin)

 \rightarrow look for deviations from SM predictions

→ low cross section [1402.4431]
 → there is some potential to study VBS at high mass

1000

mij

500

1500

X-sect = 1.106E-05(pb) AVG = 2.010E+03 RMS = 1.195E+02 Tot # Evts = 10000 Entries = 7502 Underse = 0 Over

2000

2500

3000

→ kinematics distinct between signal & background

1500

X-sect = 1.020E-01(pb) AVG = 4.472E+02 RMS = 2.786E+02

2000

2500

3000

→ cleaner, small background for masses ~ 2TeV

1000

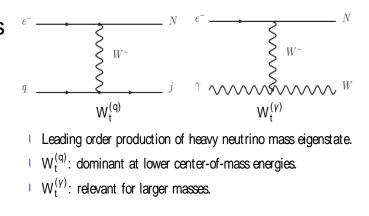
mij

Tot # Evts = 10000 Entries = 5626 Undersc =

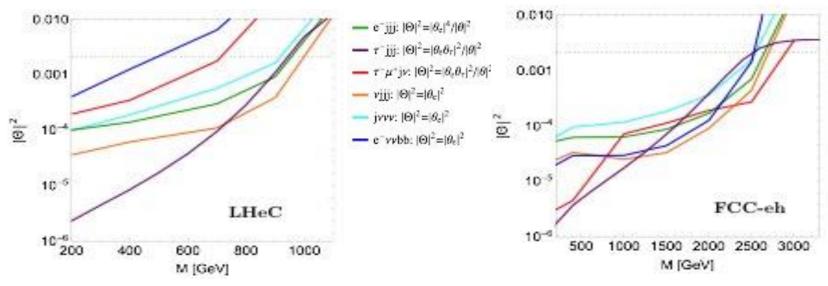
500

 \rightarrow low pile-up

Sterile Neutrinos


Slide from [Oliver Fischer]

Related articles considering electron-proton colliders


["Polarized window for left-right symmetry and a right-handed neutrino at the Large Hadron-Electron Collider", S. Mondal, S. K. Rai, Phys. Rev. D 93 (2016) no.1, 011702]

["Probing the Heavy Neutrinos of Inverse Seesaw Model at the LHeC", S. Mondal, S. K. Rai; Phys. Rev. D 94 (2016) no.3, 033008]

["Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider", M. Lindner, F. S. Queiroz, W. Rodejohann, C. E. Yaguna; JHEP 1606 (2016) 140]

limits for LNC signatures [S. Antusch, E. Cazzato, O. Fischer, 1612.02728]

Related previous talks at FCC week 2018

General introduction, physics, detector, CDR, see [Claire Gwenlan's talk "PDFs at the FCC-eh"], before see [Uta Klein's talk "Higgs SM Couplings at FCC-ep"], before

Sterile neutrinos,

see [Oliver Fischer's talk "Heavy neutrino discovery prospects at FCC"], before

[Daniel Britzger, "EW measurements in ep"], before

[Kaustubh Deshpande, "LLPs at FCC"], before

After: [Christian Schwanenberger, "Top physics in ep"]