BSM Physics @ ep Colliders

Kechen Wang (DESY) on behalf of the LHeC/FCC-eh BSM Physics Group

2nd FCC Physics Workshop, CERN Jan. 17, 2018

Thank Monica D'Onofrio & Georges Azuelos for preparing the slides.

60 GeV acceleration with Recirculating Linacs:

Electron Beam

Slide based on [Oliver Brüning, FCC week 2017 in Berlin, "FCC-eh Configuration and Performance"]

Animation from [A. Bogacz (JLab) @ ERL'15]

Layout & Civil Engineering

Three accelerating passes through each of the two 10 GeV linacs (efficient use of LINAC installation!) → 60 GeV beam energy

Introduction

★ ep collider is ideal to study common features of electrons and quarks with
 → EW / VBF production, LQ, multi-jet final states, forward objects

- ★ Differences and complementarities with *pp* colliders
 - ✓ Some promising aspects:
 → small background due to absence of QCD interaction between *e* and *p* → very low pileup
 - × Some difficulties:
 - \rightarrow low production rate for NP processes due to small \sqrt{s}

Aim of this talk:

- \rightarrow report on most recent studies and progress
- \rightarrow brief overview of previously finalized studies
- \rightarrow encourage future studies and synergies

Outline

★ Indirect impact from improved PDF

★ Direct Searches

- ◆ BSM Higgs: invisible decay; H->4b, H->multi-j, H⁺, H⁺⁺
- RPC SUSY: DM, sleptons
- Anomalous gauge couplings: VVV
- Leptoquarks & RPV SUSY squarks: (limits, quantum # & couplings)
- Contact interactions: eeqq (very heavy LQ, compositeness)
- Vector boson scattering
- BSM in the top sector: see [Christian Schwanenberger's talk "Top physics in ep"]
- Sterile neutrinos & more long-lived particles: see [Oliver Fischer's talk "Heavy neutrino discovery prospects at FCC"]

★ Outlook & Summary

More details, see [https://twiki.cern.ch/twiki/bin/viewauth/LHeC/LHeCFCCehBSM]

Example: gluon-gluon initiated processes

 \rightarrow large uncertainties in high-x PDFs limit searches for new physics at high scales

→ many interesting processes at LHC are gluon-gluon initiated: top, Higgs, ... and BSM processes, such as

gluino pair production

At HL-LHC,

~ 40-50% uncertainties on the gluongluon initiated gluino production cross section in high-x region.

At FCC-hh, Similar x range for sensitive region => reducing PDF uncertainties by ep can be crucial to improve the *pp* BSM limits.

No doubts that having an e-p machine running in parallel with p-p will be very important.

BSM Higgs

> Higgs invisible decays

* $h \rightarrow invisible$, see [Uta Klein's talk "Higgs SM Couplings at FCC-ep"]

> Higgs exotic decays

- ↔ *h* → $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ → (3*j*)(3*j*) in RPV SUSY
- * $h \rightarrow 2\phi \rightarrow (b\overline{b})(b\overline{b})$ [S. Liu, Y. Tang, C. Zhang, S. Zhu, 1608.08458]

Charged Higgs

✤ $H^{\pm\pm}$, in Vector Boson Scattering

[H. Sun, X. Luo, W. Wei and T. Liu, Phys. Rev. D 96, 095003 (2017)]

- ✤ H[±], in Vector Boson Scattering [Georges Azuelos, Hao Sun, and Kechen Wang, 1712.07505]
- ♦ H^+ , in 2HDM type III, $p e^- \rightarrow \nu j H^+ \rightarrow \nu j (c\overline{b})$,

[J. Hernández-Sánchez, etc. 1612.06316]

Higgs Exotic Decays

$h o \widetilde{\chi}^0_1 \, \widetilde{\chi}^0_1 o (3j)(3j)$ in RPV SUSY

Neutralino might decay in 3 jets (UDD terms)

Some estimates:

$$\begin{split} \mathsf{N}_{\mathsf{exp}} &= \mathsf{L} \times \sigma_h \times \mathsf{BR}(h \to \tilde{\chi}_1^0 \, \tilde{\chi}_1^0) \times [\mathsf{BR}(\tilde{\chi}_1^0 \to jjj)]^2 \\ \mathsf{In} \ 1 \ \mathsf{ab}^{-1}, \ \sigma_h = 1008 \ \mathsf{fb} \ (\mathsf{CC} \ \mathsf{with} \ \mathsf{P} = -80\%), \\ \mathsf{assuming} \ \mathsf{BR}(h \to \tilde{\chi}_1^0 \, \tilde{\chi}_1^0) = 10\%, \\ \mathsf{N}_{\mathsf{exp}} &= 108000 \times [\mathsf{BR}(\tilde{\chi}_1^0 \to jjj)]^2 \sim 1000 \ \mathsf{with} \ 1 \ \mathsf{ab}^{-1} \\ \to \ \mathsf{if} \ \mathsf{BR}(\tilde{\chi}_1^0 \to jjj)) \sim 10\%, \ \mathsf{good} \ \mathsf{potential} \ \mathsf{at} \ \mathsf{FCC-eh} \end{split}$$

$$h
ightarrow 2\phi
ightarrow \left(b\overline{b}
ight)(b\overline{b})$$
 [S. Liu, Y. Tang, C. Zhang, S. Zhu, 1608.08458]

Introducing a new real scalar ϕ with effective interaction $\mathcal{L}_{eff} = \lambda_h v h \phi^2 + \lambda_b \phi \bar{b} b + \mathcal{L}_{\phi \text{ decay,other}}$

Final state: 1 fwd j + 4 b + MET

$$m{h}
ightarrow 2m{\phi}
ightarrow ig(b\overline{b}ig)$$
 [S. Liu, Y. Tang, C. Zhang, S. Zhu, 1608.08458]

Cut-based Analysis @ parton-level

→ Analysis @ FCC-eh in progress
 → Much better limits expected.

Summary

 $\Phi \equiv \begin{pmatrix} 0\\ \frac{\tilde{h}+v}{\sqrt{2}} \end{pmatrix}, \quad S \equiv \frac{h'+x}{\sqrt{2}}$

 $\begin{pmatrix} \phi \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \tilde{h} \\ h' \end{pmatrix}$

Higgs Exotic Decays

 $h \rightarrow 2\phi \rightarrow (b\overline{b})(b\overline{b})$ [Uta Klein, Michael o'Keefe] MVA-BDT Analysis @ FCC-eh, detector level

Significances after BDT > 0. P_{a} =-80%, L=1000 fb ⁻¹				$M_{a} (GeV)$			
			20			60	
	BR (%)	σ (fb)	Δσ (fb)	Z	σ (fb)	Δσ (fb)	Z
	0.2	0.03	0.02	1.14	0.03	0.03	1.17
	0.4	0.05	0.02	2.27	0.07	0.03	2.33
	0.6	0.08	0.02	3.37	0.10	0.03	3.47
	0.8	0.10	0.02	4.46	0.13	0.03	4.59
	1	0.13	0.03	5.54	0.17	0.03	5.71

Precisions: BR ~ 1% for 1000 fb⁻¹ BR ~ 10% for 100 fb⁻¹ (within 1 year)

Theoretical Motivation of Georgi-Machacek Model:

- → No fundamental reason for a minimal Higgs sector => important to extending scalar sector with higher isospoin multiplets
- → Might generate a Majorana mass for neutrinos via the type-II seesaw mechanism
- → It preserves the custodial SU(2)_C symmetry at tree level => keeping the EW ρ parameter ~ 1 => less constrained experimentally

Scalar sector of the GM model: complex isospin doublet (ϕ^+, ϕ^0) with hypercharge Y=1; real triplet (ξ^+, ξ^0, ξ^-) with Y=0; complex triplet $(\chi^{++}, \chi^+, \chi^0)$ with Y = 2;

[H. Logan, M. Zaro, LHCHXSWG-2015-001]

Signatures of the five-plet in GM model:

$H^{\pm\pm}$ in Vector Boson Scattering

Summary

H^{\pm} in Vector Boson Scattering

[Georges Azuelos, Hao Sun, and Kechen Wang, 1712.07505]

Signal:

Production of H_5^+ & H_5^- in the GM Model \rightarrow Final state: 1 e⁻ + 1 j + 1 Z(-> *t*⁺ *t*) + 1 W(-> j j); *l* = e, μ .

SM Background B1: $p e^{-} > j e^{-} Z V$, $V \rightarrow jj$ B2: $p e^{-} > j e^{-} Z jj$, jets from QCD radiation

Signal production cross section p e⁻ \rightarrow j e⁻ H_5^{\pm} , $(H_5^{\pm} \rightarrow Z W^{\pm})$

H^{\pm} in Vector Boson Scattering

H^+ in 2HDM type III

[J. Hernández-Sánchez, etc. 1612.06316]

Charge current production processes
$$p e^- \rightarrow \nu j H^+ \rightarrow \nu j (c \overline{b})$$

Parameters for a few optimistic benchmark points in the 2HDM-III as a 2HDM-I, -II and -Y configuration. Significances with 100 fb⁻¹ @ parton level

(Here, $e_b = 0.50, e_c = 0.1$	and $e_j = 0.0$	01, where $j =$	u,d,s,g
--------------------------------	-----------------	-----------------	---------

2HDM	X	Y	Ζ	$m_{H}^{\pm} = 110 \text{ GeV}$	
				cb	[fb]S.cb
Ia	5	5	5	0.99	97.36
Ib	5	5	5	0.99	99.80
IIa	32	0.5	32	0.99	92.00
Ya	32	0.5	0.5	0.99	75.12

	S	В	$S = S/B^{1/2}$
Ia $(X = 5, Y = 5)$	243.4	3835.1	3.9
Ib $(X = 5, Y = 5)$	249.5	3835.1	4.0
II ($X = 32, Y = 0.5$)	230	3835.1	3.7
Y(X = 32, Y = 0.5)	187.8	3835.1	3.0

 \rightarrow H⁺ of the 2HDM-III with mass 110 GeV would be observed with ~ 3–4 σ significance @ LHeC with 100 fb⁻¹

 \rightarrow Challenging at pp due to large background for multi-jet final state

 \rightarrow Good discovery potential at FCC-eh

R-Parity Conserving SUSY

Current LHC limits on SUSY DM:

Current LHC limits on SUSY sleptons

Complementary at ep:

- (a) Compressed Scenarios:
 - \rightarrow decay products are very soft, challenging @ pp
 - \rightarrow fwd *j*/e, low bkg, feasible @ ep
- (b) Light sleptons:
 - \rightarrow can be motivited by the "muon g-2"
 - \rightarrow DM production can be enhanced by the slepton decays.

Signal scenarios:

Bino: $M_{\tilde{\chi}_{1}^{0}}$ Wino: $M_{\tilde{\chi}_{1}^{\pm}} \sim M_{\tilde{\chi}_{2}^{0}} = M_{\tilde{\chi}_{1}^{0}} + 1 \text{ GeV}$

(1) Slepton slightly heavier (light slepton case)

Slepton: $M_{\tilde{l}_L} = M_{\tilde{\chi}_1^{\pm}} + 35 \text{ GeV}$ Sneutrino: $M_{\tilde{\nu}} \sim M_{\tilde{l}_L} - 9 \text{ GeV}$

(2) Slepton & Sneutrino heavy and decoupled (heavy slepton case)

R-Parity Conserving SUSY

Dark matter via kinematical observables

Preliminary results from [Kechen Wang, Sho Iwamoto, Monica D'Onofrio, Georges Azuelos]

MVA-BDT analysis @ detector-level

Example input observables

R-Parity Conserving SUSY

Dark matter via kinematical observables

Preliminary results from [Kechen Wang, Sho Iwamoto, Monica D'Onofrio, Georges Azuelos]

Limits on DM mass

Complementary between ep and pp

DM & Sleptons via disappearing tracks

Long-lived charged particles (LLCP) with $c\tau > 10$ mm

Other scenarios at FCC-eh:

Preliminary results from [Kechen Wang, Sho Iwamoto, Monica D'Onofrio, Georges Azuelos]

→ Cross section enhanced with "3-body production"

Higgsino:

disappearing tracks + soft pion (from chargino decay) see [Kaustubh Deshpande's talk "*LLPs at FCC*"] [David Curtin, Kaustubh Deshpande, Oliver Fischer, Jose Zurita, 1712.07135]

Simple efficiency analysis

 \rightarrow Requiring minimal detection length I_{min}

Leptoquarks

Limits of Leptoquarks

(increased interest in LQ due to recent B anomalies)

ep collider: sensitive to $\lambda < 0.03$

Sensitivity @ HL-LHC ~ 2.9 TeV \rightarrow Close to the reach for FCC-eh

LHeC / FCC-eh offer opportunity to evaluate quantum numbers & couplings (fermion number, spin, couple chirally, ...)

If deviations are confirmed by the end of HL-LHC, FCC-hh will see them, and FCC-eh can characterize those signals !

Summary

Anomalous Gauge Couplings

Triple Gauge Couplings (WWV, $V = \gamma$, Z)

[A. Senol, O. Cakir, I. Turk Cakir] $ep \rightarrow v_e qZX$ for $Z \rightarrow II (I = e, \mu)$

Analysis of the signal & backgrounds

Sensitivities to anomalous couplings λ_Z ~ 10^{-3}

Anomalous Gauge Couplings

Triple Gauge Couplings (WWV, $V = \gamma$, Z)

[R. Li, X. Shen, K. Wang, T. Xu, L. Zhang and G. Zhu, 1711.05607]

Process $p e^- \rightarrow j e^- \mu^+ \nu$

 $\Delta\phi_{ej}$ -- azimuthal angle difference between scattered beam electron and jet

 $\theta_{\mu W}$ -- angle between decay product μ^+ in the W^+ rest frame and the W^+ direction in the collision rest frame

Limits via shape analysis by constructing χ^2 from all bins

→ Sensitivity ~ 10⁻³ @ LHeC with 2-3 ab⁻¹
 → Better sensitivity @ FCC-eh, in progress

Summary and Complementary between ep and pp

From [Georges Azuelos and Monica D'Onofrio]

Compositeness	 4-fermion EFT: Lepton-quark compositeness scale Quark radius
Leptoquarks and RPV squark decay	 Accessible range largely excluded, but not completely Better measure of LQ characteristics, if they exist
Anomalous Triple Gauge Couplings	Comparable to LHC
Top FCNC couplings	• tuγ, tcγ, tuH couplings
Vector-like leptons, heavy/excited leptons, bileptons, higher isospin lepton multiplets	 No constraints on VLL, so far, at LHC Extend sensitivity to eγ for lower masses
Heavy neutrinos, Majorana neutrinos, sterile neutrinos	Symmetry-protected see-saw model
SUSY EW: sleptons, Higgsino, (dark sector)	 kinematical observables for compressed scenario Long-lived neutral particles Disppearing tracks
Anomalous Quartic Gauge Couplings	• Better control on background: no gluon exchange diagrams (mostly FCC?)
Extended Higgs sector: higher isospin multiplet	• Singly- and doubly- charged higgs by VBF (mostly FCC)

Conclusion & Outlook

- ★ ep offers a variety of opportunities for BSM searches
 - → precision measurements, complementary searches; distinguishing & characterization new physics theories;
 - → Can be done in parallel to pp machines (HL-LHC/HE-LHC/FCC-hh) by adding an electron beam
- ★ Improving pp limits indirectly by improved PDF (@ high and low x)
- ★ Fruitful BSM physics scenarios:
 - → Leptoquarks (RPV SUSY), Contact interactions, Anomalous gauge couplings, Vector boson scattering, BSM top physics, RPC SUSY, BSM Higgs, LLCPs, Sterile neutrinos...
- ★ Physics potential yet to be fully exploited
 - \rightarrow Detector-level studies crucial for next phase
 - → You are welcome to join our team !

Backup Slides

Improved PDF Measurements @ LHeC & FCC-eh

- → low-x: no current data to constrain $x \le 10^{-4}$; better but not much after HL-LHC;
- \rightarrow mid-x: need higher precision for Higgs
- → high-x: very poorly constrained; limits searches for new, heavy particles

 → FCC-eh: access to much smaller x, larger Q²
 → important for the FCC-hh as it will probe much lower x regions for standard processes

Leptoquarks and B-anomalies

Slide from [Dec. 14, 2017, https://indico.desy.de/indico/event/18276/contribution/1/material/slides/0.pdf]

Leptoquarks

Leptoquarks (LQs)

→ appear in several extensions to SM: production s ~ $\lambda^2 q(x)$

 \rightarrow can be **scalar** or **vector**, with fermion number 0 (e⁻ qbar) or 2 (e⁻ q)

At the p-p

→ mostly pair production (from gg or qq)
→ not sensitive to the LQ-q-I coupling

At the e-p

→ both baryon & lepton quantum numbers
 → ideally suited to search for and study
 properties of new particles coupling to both
 leptons and quarks

→ single, resonant production → sensitive to LQ-q-l coupling

Contact Interactions

Contact interaction eeqq

- if new physics enters at higher energy scales: $\Lambda >> \sqrt{s}$
- such indirect signatures can be seen as effective 4-fermion interaction

- New currents or heavy bosons may produce indirect effect via new particle exchange interfering with γ/Z fields.
- Reach for Λ

 \rightarrow VV: ~290 TeV; LL: ~160 TeV [LHeC results: see CDR 2012]

 → comparable to FCC-hh for some of the couplings
 → same as HL-LHC vs LHeC
 → need more calculations ! e q q

VV: all couplings with +ve sign LL: only LL couplings between *q* and *e*

28

Vector Boson Scattering

New resonances possibly relevant for unitarity restoring

- → expect below ~ 2-3 TeV
- \rightarrow look for deviations from SM predictions

→ there is some potential to study VBS at high mass

- → cleaner, small background for masses ~ 2TeV
- \rightarrow low pile-up

Anomalous Gauge Couplings

Triple Gauge Couplings (WWV, $V = \gamma$, Z)

 \rightarrow Precisely defined in SM

→ Parameterize possible new physics contributions to this vertex ($\Delta \kappa_{\gamma}, \lambda_{\gamma}$)

 \rightarrow Current constraints (best from LEP) use various assumptions

	LEP 되	CDF [12]	D 0 [13]	ATLAS [10]	CMS 🛄
$\Delta \kappa_{\gamma}$	[-0.099, 0.066]	[-0.460, 0.390]	[-0.158, 0.255]	[-0.135, 0.190]	[-0.210, 0.220]
λγ	[-0.059, 0.017]	[-0.180, 0.170]	[-0.036, 0.044]	[-0.065, 0.061]	[-0.048, 0.037]

Table 1: Allowed ranges, at 95% C.L., on the anomalous W W γ couplings from the data collected at the LEP, Tevatron and LHC experiments. In each case, the most restrictive of the reported measurements is taken.

At the ep:

→ can clearly distinguish between CC events $e + p \rightarrow v_e + jet$ (W-exchange) and NC events $e + p \rightarrow e + jet$ (photon or Z boson exchange)

 \rightarrow triggering on a final state photon, can provide very clean bounds on the anomalous TGC's !

single γ production@LHeC: 1405.6056, 1406.7696, FCC-DRAFT-ACC-2016-017;

Existing limits: *ww* pair production@LEP/LHC: 1302.3415, 1703.06095, 1706.01702;

aTGC	LEP	CMS, 8 TeV	ATLAS, 8 TeV	SM
$\Delta \kappa_{\gamma}$	[-0.099, 0.066]	[-0.044, 0.063]	[-0.061, 0.064]	0
λ_{γ}	[-0.059, 0.017]	[-0.011, 0.011]	[-0.013, 0.013]	0

Table 1: 95% C.L. limits on $\Delta \kappa_{\gamma}$ and λ_{γ} at LEP and LHC. These bounds are from single parameter fittings. LHC measurement of WW/WZ pair production in semi-leptonic decay channel with an integrated luminosity of 19 ab^{-1} (CMS) and 20.2 ab^{-1} (ALTAS) give the above abounds. arXiv:1302.3415, 1703.06095, 1706.01702

Triple Gauge Couplings (WWV, $V = \gamma$, Z)

FIG. 1: Diagrams of $e^-p \rightarrow e^-\mu^+\nu_{\mu}j$ process.

variable	μ^+ decay, E	$G_e = 60 \text{ GeV}$	μ^+ decay, $E_e = 140~{ m GeV}$		
parameter	$\cos\theta_{\mu^+W^+}$	$\Delta \phi_{ej}$	$\cos\theta_{\mu^+W^+}$	$\Delta \phi_{ej}$	SM
λ_γ	—	[-0.0074, 0.0062]	—	[-0.0038, 0.002]	0
$\Delta \kappa_{\gamma}$	[-0.005, 0.0058]	[-0.0057, 0.0061]	[-0.0032, 0.0029]	[-0.0023, 0.0026]	0
variable	μ^- decay, $E_e = 60 \text{ GeV}$		μ^- decay, $E_e=140~{\rm GeV}$		
parameter	$\cos heta_{\mu^-W^-}$	$\Delta \phi_{ej}$	$\cos heta_{\mu^-W^-}$	$\Delta \phi_{ej}$	SM
λ_γ	—	[-0.011, 0.011]	_	[-0.0027, 0.0051]	0
$\Delta \kappa_{\gamma}$	[-0.0078, 0.0078]	[-0.0075, 0.008]	[-0.005, 0.0029]	[-0.0041, 0.0051]	0

TABLE II: The 95% C.L. bound on aTGC λ_{γ} and $\Delta \kappa_{\gamma}$, obtained from the kinematic observables $\cos \theta_{\mu^{\pm}W^{\pm}}$ and $\Delta \phi_{ej}$ at LHeC with $E_e = 60$ and 140 GeV. The results listed are from single-parameter fitting when the other one is fixed to its SM value. The "—" in the table means this bound is no better than the ones from LEP.

GM model

Using $SU(2)_L \times SU(2)_R$ covariant forms of the fields:

$$\Phi = \begin{pmatrix} \phi^{0^*} & \phi^+ \\ \phi^- & \phi^0 \end{pmatrix} \quad \Delta = \begin{pmatrix} \chi^{0^*} & \xi^+ & \chi^{++} \\ \chi^- & \xi^0 & \chi^+ \\ \chi^{--} & \xi^- & \chi^0 \end{pmatrix}$$