System size dependence of particle production in EPOS

Klaus Werner

in collaboration with Y. Karpenko, T. Pierog, G. Sophys, M. Stefaniak, B. Guiot, J. Aichelin, A. G. Knospe, C. Markert Last WW :

Multiplicity dependence of yields based on core-corona

Core = Particle production via Cooper-Frye

Question: Does canonical suppression play a role?

This talk : First attemps (very preliminary) to answer...

circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76 TeV)

ALICE data references (collected by A. G. Knospe)

<dNch/deta> in Pb+Pb: Phys. Rev. Lett. 106 032301 (2011) pi+-, K+-, p+- in Pb+Pb: Phys. Rev. Lett. 88 044910 (2013) Lambda in Pb+Pb: Phys. Rev. Lett. 111 222301 (2013) XI- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016) pi+-, K+-, p+-, A in p+Pb: Phys. Lett. B 728 25-38 (2014) <dNch/deta> in p+Pb: Phys. Lett. B 728 25-38 (2014) XI- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016) <dNch/deta> p+ 7 7 to?: Eur. Phys. J. C 68 345-354 (2010) pi+-, K+-, p+- in p+p 7 TeV: Phys. Lett. B 712 309 (2012) and pp data points from Rafael Derradi de Souza, SQM2016

EPOS: Gribov-Regge approach

Phys.Rept. 350 (2001) 93-289.

Elastic scattering S-Matrix based on Pomerons

Pomerons : Parton ladders (DGLAP), soft pre-evolution

Cutting rules to get inelastic cross sections

Same principle for pp, pA, AA

Explicite formulas for cross sections (Phys.Rept. 350 (2001) 93-289)

Non-linear effects (Major improvements the past few years)

Computing the expressions G for single Pomerons: A cutoff Q_0 is needed (for the DGLAP integrals).

Taking Q_0 constant leads to a power law increase of cross sections vs energy (=> wrong)

because non-linear effects like gluon fusion are not taken into account

Solution: Instead of a constant Q_0 , use a dynamical saturation scale for each Pomeron:

$$oldsymbol{Q}_s = oldsymbol{Q}_s(N_{{
m I\!P}},s_{{
m I\!P}})$$

with

 $N_{\rm IP}$ = number of Pomerons connected to a given Pomeron (whose probability distribution depends on Q_s)

 $s_{\mathbb{IP}}$ = energy of considered Pomeron

 $Q_s(N_{
m I\!P},s_{
m I\!P})$ from fitting elementary quantities

Core-corona picture in EPOS

Phys.Rev.Lett. 98 (2007) 152301, Phys.Rev. C89 (2014) 6, 064903

Gribov-Regge approach => (Many) kinky strings => core/corona separation (based on string segments)

peripheral AA high mult pp,pA

low mult pp

core => hydro => flow + statistical decay
corona => string decay

Final state hadronic cascade:

Resonance suppression (in-medium decay)

depends on the lifetime and the system size

Also possible: Resonance production, inelastic scattering

circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76 TeV)

ALICE data references (collected by A. G. Knospe)

<dNch/deta> in Pb+Pb: Phys. Rev. Lett. 106 032301 (2011) pi+-, K+-, p+- in Pb+Pb: Phys. Rev. C 88 044910 (2013) Lambda in Pb+Pb: Phys. Rev. Lett. 111 222301 (2013) XI- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016) pi+-, K+-, p+-, A in p+Pb: Phys. Lett. B 728 25-38 (2014) <dNch/deta> in p+Pb: Eur. Phys. J. C 76 245 (2016) XI- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016) <dNch/deta> p+p 7 7tv: Eur. Phys. J. C 68 345-354 (2010) pi+-, K+-, p+- in p+p 7 TeV: Eur. Phys. J. C 75 226 (2015) XI- and Omega in p+p 7 TeV: Phys. Lett. B 712 309 (2012) and pp data points from Rafael Derradi de Souza, SQM2016

Pion yields: core & corona contribution

Omega to pion ratio

What about

canonical suppression?

... and energy conservation ?

in pp, up to 50% violated (using CF)

Microcanonical hadronization in EPOS (very preliminary)

Hadronization hyper-surface $x^{\mu}(au,arphi,\eta)$:

$$x^0 = au \cosh \eta, \; x^1 = r \cos arphi, \ x^2 = r \sin arphi, \; x^3 = au \sinh \eta,$$

with $r = r(\tau, \varphi, \eta)$, representing FO condition.

Hypersurface element:

$$d\Sigma_{\mu} = arepsilon_{\mu
u\kappa\lambda} rac{\partial x^{
u}}{\partial au} rac{\partial x^{\kappa}}{\partial arphi} rac{\partial x^{\lambda}}{\partial \eta} \, d au \, darphi \, d\eta.$$

Flow of momentum vector dP^{μ} and conserved charges dQ_A through the surface element:

$$egin{array}{rcl} dP^{\mu} &=& T^{\mu
u}d\Sigma_{
u}, \ dQ_{A} &=& J^{
u}_{A}d\Sigma_{
u}. \end{array}$$

(with $A \in \{C, B, S\}$, corresponding electric charge, baryon number and strangeness)

Momentum and charges are conserved :

$$egin{array}{lll} \int_{\Sigma_{
m FO}} dP^{\mu} &=& P^{\mu}_{
m ini}, \ \int_{\Sigma_{
m FO}} dQ_A &=& Q_{A\,{
m ini}}. \end{array}$$

Invariant mass

$$dM=\sqrt{dP^{\mu}dP_{\mu}},$$

four-velocity

$$U^{\mu}=dP^{\mu}/dM,$$

volume element

$$dV = u^\mu d\Sigma_\mu.$$

The four-velocity U^{μ} is NOT equal to the fluid velocity u^{μ} ! (Only in case of zero pressure)

Sub-hyper-surfaces: $\Sigma_{\rm FO} = \bigcup \Sigma_{\rm FO}^n$,

$$egin{aligned} M_n &= \int_{\Sigma_{ ext{FO}}^n} dM, \ V_n &= \int_{\Sigma_{ ext{FO}}^n} dV, \ Q_{A\,n} &= \int_{\Sigma_{ ext{FO}}^n} dQ_A. \end{aligned}$$

defines "effective objects" O_n with masses M_n and charges Q_{An} ...

...which we **decay microcanonically**:

then **boost the particles** according to velocity U^{μ} .

Work in progress (will come soon)

□ This procedure based on FO surface & flow from viscous hydro as in EPOS3

□ Large particle table (used presently in EPOS3)

Here (as first tests) for pp and pPb:

 \square FO surface & flow parametrized,

 \Box limited particle table

Omega to pion ratio (CF)

Omega to pion ratio (microcanonical)

Ξ^* to pion ratio (CF)

Ξ^* to pion ratio (microcanonical)

Summary

- Very preliminary results concerning microcanonical particle production in EPOS show:
 - Microcanonical suppression of Ω and (somewhat less) of Ξ^* in pp and pPb
 - But core-corona still essential

Thank you!

Hydro evolution (Yuri Karpenko)

Israel-Stewart formulation, $\eta - \tau$ coordinates, $\eta/S = 0.08$, $\zeta/S = 0$

Freeze out: at 164 MeV, Cooper-Frye $E \frac{dn}{d^3p} = \int d\Sigma_{\mu} p^{\mu} f(up)$, equilibrium distr

Hadronic afterburner: UrQMD

Marcus Bleicher, Jan Steinheimer