Nuclear modification factors of strange and multi-strange particles in pPb collisions with the CMS experiment

Hong Ni Vanderbilt University for the CMS Collaboration

VANDERBILT UNIVERSITY

34th WWND, Guadeloupe 27th March, 2018

Motivation

- Two particle correlations show "Ridge" structure in pA
- "Ridge" indicates collective effects may be present in small systems.
 The nature of the "ridge" is still under intense debate.
- If radial flow->flattened spectra->dependence on the mass of hadrons

Motivation

- Mass dependence in the strange particle spectra has been seen in CMS.
- What about strange particle spectra at higher p_T ?

34th WWND, Guadeloupe

Physics processes reflected in spectral shapes

What can modify particle spectra, besides radial flow?

- Radial flow
 - mass ordering Ο
 - larger radial flow effect at Pb-going direction \bigcirc
- Hadronization by quark recombination dependence on number of valence quarks
- Shadowing in nPDF (x<0.02 for this analysis)
 - larger R_{DA} at Pb-going side Ο
 - $Y_{asym} > 1$ Ο
 - larger Y_{asvm} at forward rapidities
- "Cronin" effect / multiple parton scattering
 - larger R_{pA} at p-going side Ο
 - transverse momentum broadening of the initial partons inside the projectile

nPDF for DIS on a nucleus with A nucleons is smaller than the incoherent sum of the nucleon A*PDF.

PLB 768(2017) 103

Observables

 $R_{\rm AB}(p_{\rm T}) = \frac{{\rm d}^2 N^{\rm AB}/{\rm d} p_{\rm T} {\rm d} y_{\rm CM}}{\langle N_{\rm coll} \rangle {\rm d}^2 N^{\rm PP}/{\rm d} p_{\rm T} {\rm d} y_{\rm CM}}$

 R_{pPb} will be unity, if pPb collision is just superposition of pp collision.

x: fractional momentum from a colliding nucleon carried by the parton

larger x at Pb-going side, smaller x at p-going side

With R_{pPb} and Y_{asym} , different x can be accessed.

$$Y_{\text{asym}}(p_{\text{T}}) = \frac{d^2 N(p_{\text{T}}) / dy_{\text{CM}} dp_{\text{T}}|_{y_{\text{CM}} \in [-b, -a]}}{d^2 N(p_{\text{T}}) / dy_{\text{CM}} dp_{\text{T}}|_{y_{\text{CM}} \in [a, b]}}.$$

$$Y_{asym} = \frac{Yield \ Pb-going}{Yield \ p-going}$$

Previous measurements

- PHENIX R_{dA}: dependence of number of valence quarks(Recombination?)
- CMS charged hadron Y_{asym} shadowing in nPDF larger at forward η_{cm} .
- What about identified strange particles in CMS?

K_s , Λ^0 , Ξ^- , and Ω^- reconstruction

Decay Channel:

with an additional charged track with the proper sign

Invariant mass peaks

Spectra

67

R_{pA} for y_{CM} [-1.8,1.8]

- R_{pPb} of K_s is around unity for $p_T > 3 GeV$
- Significant enhancement at intermediate p_T ordered by particle mass
- Mass dependence disappears at higher $\ensuremath{p_{\text{T}}}$

Hong Ni

R_{pA} for y_{CM} [-1.8,1.8]

- Mass ordering of identified strange particle in CMS
- $M_{proton} \sim 938.272 \text{ MeV}, M\phi \sim 1019.445 \text{MeV}, but R_{dA}(proton) > R_{dA}(\phi)$
- These suggest both radial flow effect and recombination play a role

R_{pA} for y_{CM} [-1.8,1.8]

- Comparison with EPOS LHC, which includes parametrized flow, is shown
- EPOS LHC prediction agrees with data up to 3 GeV.
- Data show less mass dependence than EPOS LHC

R_{pA} for y_{CM} [-1.8,0] and [0,1.8]

- R_{pA} in Pb-going direction is larger than p-going direction
- Radial flow
- Shadowing in nPDF
- "Cronin" effect / multiple parton scattering X
- EPOS LHC predicts that R_{pA} is larger on the Pb-going side, but overpredicts the mass dependence

Rapidity dependence of spectra

Thanks to the large acceptance of CMS, we can measure V⁰s spectra in several different center of mass rapidity ranges.

- Y_{asym} >1 for all rapidity bins
- Consistent with radial flow effect and shadowing effect.

- Y_{asym} >1 for all rapidity bins
- Consistent with radial flow effect and shadowing effect.
- Y_{asym} of charged particles and V⁰s don't show much difference in [0.3, 0.8]

- Y_{asym} >1 for all rapidity bins
- Consistent with radial flow effect and shadowing effect.
- Y_{asym} of charged particles and V⁰s don't show much difference in [0.3, 0.8]
- In forward rapidity bins, peak value: $h^{+/-} < K_S < \Lambda$

- Y_{asym} >1 for all rapidity bins
- Consistent with radial flow effect and shadowing effect.
- Y_{asym} of charged particles and V⁰s don't show much difference in [0.3, 0.8]
- In forward rapidity bins, peak value: h^{+/-} < K_S < Λ
- In forward rapidity bins, peak position: $K_S < h^{+/-} < \Lambda$

- Y_{asym} of V⁰ calculated from EPOS LHC increase from mid-rapidity to forward rapidity. This trend is consistent with data
- However, EPOS LHC doesn't show much particle-species dependence.
- It would be very useful to see predictions from other models.

Summary

- Spectra of identified strange and multi-strange particles in several center of mass rapidity bins are measured in 5TeV pp and pPb with CMS.
- R_{pA} and R_{dA} from LHC and RHIC suggest that both radial flow and recombination play a role in particle production
- Larger R_{pA} at Pb-going side is consistent with radial flow and shadowing
- Y_{asym} of V⁰s are compared with charged hadrons.
 ➤ In forward rapidity bins, peak value: h^{+/-} < K_S < Λ
 ➤ In forward rapidity bins, peak position: K_S < h^{+/-} < Λ

Thank you!

Extra Slides

CMS Detector

Extra Slides

