PHENIX results on collectivity in small systems

Weizhuang Peng Vanderbilt University

Motivation

Phys. Rev. Lett. 116, 172301

- Ridge observed in small systems
- Where does the flow in small systems come from?
 - Initial geometry translated into final flow
 - Initial state momentum correlation

Geometry scan

Ref : Reaching for the horizon: The 2015 long range plan for nuclear science

Experimental method

We used event plane method to calculate v_2

GEOMETRY SCAN

v_2 in p/d/³He+Au

- $v_2(^{3}HeAu) \sim v_2(dAu) > v_2(pAu)$, consistent with eccentricity
- SONIC model describes the data well

v_3 in d/³He+Au

Initial geometry translates into final state flow

 $\varepsilon_3(^{3}\text{HeAu}) > \varepsilon_3(\text{dAu})$

PH^{*}ENIX

Theory and the combined v_2/v_3 data

 Simultaneous description of both v₂ and v₃ provides a unique model test: excellent agreement with hydro for all available measurements.

PH^{*}ENIX

FLOW OF IDENTIFIED PARTICLES

Identified particle flow

Phys.Rev.Lett.98, 162301(2007)

Phys.Lett.B726, 164 (2013)

Quark number scaling in Au+Au at 200 GeV

Mass ordering of v_2 in p+Pb at 5 TeV

What happens in small systems at RHIC energies ?

Evolution of the collision

Models compared to data	What we want to learn?
SONIC vs superSONIC	Role of pre-flow
SONIC and iEBE vs AMPT	Role of hadronization by recombination
iEBE and AMPT with vs without hadronic rescattering	Role of hadronic rescattering

Identified particle v_2 in p/d/³He+Au

- Mass splitting observed in all three systems
- Splitting more obvious in d/³He+Au than in pAu

Hydro w/o pre-equilibrium stage

Hydro with pre-equilibrium stage

- Both calculations predict mass splitting at low p_T , which is smaller in p+Au than in d+Au and ³He+Au as seen in the data
- Pre-equilibrium flow increases v₂ for both pions and protons and brings the result closer to the data.

In the hydromodels the mass splitting in v_2 at low p_T arises in the partonic phase due to the common flow field.

No influence at low p_T

Mass splitting at low p_T can also come from hadron rescattering

Pion v_2 over proton v_2

- Data in all systems exhibit a similar trend (systematics cancel in ratio)
- Both hydro and AMPT describe the mass splitting at low p_T .
- Hadronization by recombination can predict the ratio right at high p_T

Quark scaling

- Approximate scaling in all three systems
- Works better in larger systems

Summary

- Initial geometry translates into final state flow
- Mass splitting in v_2 is observed in all three systems: p/d/³He + Au collisions
- Both hydro and AMPT describe the mass splitting at low $\ensuremath{p_{\text{T}}}$
 - hydro from early stages through common flow velocity
 - AMPT from late-stage hadronic rescattering
 - Different hadronic rescattering models (UrQMD and ART) have different predictions
- Reverse mass order at high p_T described by recombination
- The quark scaling motivated by recombination is observed in the three small systems, more obvious in d+Au and ³He+Au collisions, where the multiplicity is higher

Thanks

Backup

