

Recent PHENIX Results on High- $p_T \pi^0$ and η Production in Cu+Au and U+U Collisions

Murad Sarsour
Georgia State University
For the PHENIX Collaboration

Outline

- > Introduction
- > PHENIX detector
- Neutral pion and eta meson reconstruction
- Nuclear modification in Cu+Au
- Nuclear modification in U+U
- Summary

Motivation

☐ Characterize the properties of the QGP

- □ dependence of parton energy loss on energy density and nuclei overlap geometry → better understanding of parton energy loss mechanisms
- Studied by measuring nuclear modification factors:

$$R_{AA}(p_T) = \frac{d^2N_{AA}/dydp_T}{\langle N_{coll} \rangle \times d^2N_{pp}/dydp_T}$$

where $d^2N_{AA}/dydp_T$ is the per-event yield of particle production in A+A collisions and $d^2N_{pp}/dydp_T$ is the per event yield of the same process in p+p collisions. Scaled by the number of nucleon-nucleon collisions in the A+A system, N_{coll} .

- **Leading hadrons** are used as proxy for jets:
 - $\succ \pi^0$ meson: abundantly produced \rightarrow measurable at high p_T
 - γ meson: hidden strangeness → hadron suppression as a function of flavor and mass

Available A+A collisions at RHIC:

A+A	Au+Au	Cu+Cu	Cu+Au	U+U
$\sqrt{s_{NN}}$ (GeV)	7.7, 9.2, 14.6, 19.2, 19.6, 27, 39, 62.4 ,130, 200	22.4, 62.4, 200	200	193

- ☐ Cu+Au:
 - first asymmetric heavy-ion collision system
 - different overlap geometry compared to symmetric systems
- **□** U+U:
 - the largest heavy ion collision system
 - the largest energy density in central collisions

PHENIX: optimized to measure leptons: rapidity coverage: 1.2<|y|<2.2 & |y|<0.35

- high rate capability with emphasis on mass resolution & particle ID
- ➤ first level e&µ triggers

The PHENIX Detector

PH*ENIX

π⁰ & η Reconstruction in PHENIX

- $\succ \pi^0$ and η are reconstructed by combining pairs of γ clusters in the EMCal
- Combinatorial BG is estimated using mixed-event technique and subtracted
- \rightarrow π^0 peak is better pronounced because of:
 - higher production rate and reconstruction efficiency
 - o larger branching: BR($\pi^0 \rightarrow \gamma \gamma$) = 0.988, BR($\eta \rightarrow \gamma \gamma$) = 0.39
 - o smaller width: $\sigma(\pi^0)$ ~10 MeV/c², $\sigma(\eta)$ ~30 MeV/c²

Cu+Au Collisions

- first asymmetric heavy-ion collision system
- different overlap geometry compared to symmetric systems

 \square Measured over a wide p_T range: up to 20 GeV/c in central collisions and semi-central collisions, and up to 16 GeV/c in peripheral

η/π^0 ratios in Cu+Au

- η/π^0 is consistent with the m_Tscaling curve, normalized to
- η/π^0 is consistent with that measured in p+p, p+A and A+Acollisions at different energies

PHENIX, Phys. Rev. C75, 024909 (2007) CCRS, Phys. Lett. B 55, 232 (1975)

π^0 & η R_{AA} in Cu+Au: Centrality dependence

- In central and semi
 central Cu+Au collisions
 π⁰ and η suppressed
- In peripheral Cu+Au collisions: a hint on π⁰ and η enhancement
- \bullet π⁰ and η results show a good agreement \Rightarrow have similar fragmentation function modification by the medium in the accessed p_T range.

p_ (GeV/c)

Comparison of $\pi^0 R_{CuAu}$ with Other Systems

- □ In central and semi-central Cu+Au collisions π^0 yields show similar suppression as in Cu+Cu and Au+Au at similar N_{part}:
 - \star π^0 production depends on the size of the nuclear overlap, but not on it's shape
- □ In **peripheral Cu+Au** collisions π⁰ yields show a hint on enhancement while in Au+Au suppression, Cu+Cu is in between

At high p_T, production of η in Cu+Au is suppressed in the same way as in Au+Au at similar N_{part}

U+U Collisions

- The largest heavy ion collision system
- The largest energy density in central collisions

 \square Measured π^0 (η) over a wide p_T range: up to 15 (13) GeV/c in central collisions and semi-central collisions, and up to 9 (7) GeV/c in peripheral

 \rightarrow η/π^0 is consistent at different centralities and with that measured in other A+A collisions at different energies

U Nucleus Modification

□ Deformed nucleus ⇒ use Wood-Saxon distribution of the U nucleus:

$$\rho = \frac{\rho_0}{1 + e^{([r - R']/a)}}$$

where R' depends on the polar angle θ :

$$R' = R \left[1 + \beta_2 Y_2^{0}(\theta) + \beta_4 Y_4^{0}(\theta) \right]$$

where Y^0 – Legendre polynomial.

☐ Two sets of Wood-Saxon parameters were used for the Glauber MC.

Parameter	Set1/Glauber1	Set2/Glauber2
R(fm)	6.81	6.86
α (fm)	0.6	0.42
eta_2	0.28	0.265
eta_4	0.093	0
source	Phys. Lett. B 679, 440 (2009)	Phys. Lett. B 749, 215 (2015)

Deformation of the U ion

19

η & π^0 Nuclear Modification in U+U

 \triangleright η shows similar nuclear modification to that of π^0 over all centralities!

π^0 Nuclear Modification in U+U

- \triangleright At same N_{coll} values, the R_{AA} is consistent in most- to mid-central collisions
 - \star π^0 production depends on the size of the nuclear overlap, but not on it's density
- The most peripheral collision shows larger suppression in U+U collisions

η Nuclear Modification in U+U

- \triangleright At same N_{coll} values, the R_{AA} is consistent in most- to mid-central collisions
 - η production does not depend on it's density
- The most peripheral collision shows larger suppression in U+U collisions

 R_{AB} comparison for Cu+Au, Cu+Cu, Au+Au and U+U shows that:

- ➤ At N_{part} >50, all systems consistent with each other.
- At N_{part} <50, (although consistent within uncertainties) there seems to be some ordering

Cu+Au > Cu+Cu > Au+Au > U+U

Summary

- \triangleright PHENIX has measured p_T spectra and nuclear modification factors for π^0 and η in Cu+Au and U+U collisions at 200 and 193 GeV
- $ightharpoonup R_{AA}$ factors for π^0 and η are consistent within uncertainties at all momenta and centralities \Rightarrow have similar fragmentation function modification by the medium in the accessed pT range.
- Very consistent with the previous jet measurements
- In central and semi-central A+A collisions: π⁰ and η production depends on the size of the nuclear overlap but not on it's shape or density. However, there is a hint of dependence on both in most peripheral! Cu+Au > Cu+Cu > Au+Au > U+U?

