Open heavy flavour production in heavy-ion collisions with ALICE

Martin Völkl for the ALICE Collaboration

Universität Tübingen 2018-03-28

Heavy quark production

- Created in the initial hard scattering processes
- Experience evolution of system
- Hard scattering processes make pQCD calculations possible down to $p_{\rm T}=0$ $(m_{\rm c,b}\gg\Lambda_{\rm QCD})$
- Calibrated probes of quark matter

Heavy quarks in heavy-ion collisions

- Clear association of parton with measured hadron
- Learn about interaction with the quark-gluon plasma (QGP)

- In most models: Interaction of heavy quarks with constituent quarks and gluons of the medium
- Interactions can be radiative or collisional
- What are the transport properties of the medium?
- What is the contribution from collisional and radiative processes?
- Does energy loss depend on quark mass?
- Do heavy quarks hadronize differently in the medium?

Measurement of heavy quarks

- Need to disentangle: production, interaction with medium and hadronization
- Nuclear modification factor quantifies changes with respect to binary–scaled pp collisions:

$$R_{AA}(p_{T}) = rac{1}{\langle N_{coll}
angle} rac{\mathrm{d}N_{AA}/\mathrm{d}p_{T}}{\mathrm{d}N_{pp}/\mathrm{d}p_{T}} = rac{1}{\langle T_{AA}
angle} rac{\mathrm{d}N_{AA}/\mathrm{d}p_{T}}{\mathrm{d}\sigma_{pp}/\mathrm{d}p_{T}}$$

- p–Pb collisions needed to constrain non–QGP effects
- Elliptic flow coefficient v₂ quantifies production relative to collision geometry:

 $v_2 = \langle \cos[2(\phi - \psi_2)] \rangle$

 Adresses heavy-quark thermalization and path-length dependence of energy loss

The ALICE detector

- Inner Tracking System: Tracking, reconstruction of primary and secondary vertices (track impact parameter resolution better than 50 μ m for $p_T > 1.5 \text{ GeV}/c$)
- Time Projection Chamber: Tracking and particle identification via dE/dx
- Time-Of-Flight Detector: Particle Identification
- Muon Spectrometer: Absorber, tracking and trigger systems

Particle Identification with ALICE

- Separation power of detectors is momentum dependent
- Combination of detectors improves particle identification

D mesons in pp

- Charmed hadrons measured with an invariant mass analysis
- Reduction of background via PID and topological selection
- Channels used (with branching ratios):
 - $D^0 o K^- \pi^+$ (3.93 \pm 0.04%)
 - $D^+ \to K^- \pi^+ \pi^+$ (9.46 ± 0.24%)
 - $D^{*+} \rightarrow D^0 \pi^+$ (67.7 ± 0.5%)
 - $D_s^+ \to \phi^- \pi^+$ (2.27 ± 0.08%), $\phi \to K^+ K^-$
- Data reproduced by FONLL over wide momentum range
- Measurement uncertainties much smaller than those from theory

Martin Völkl Uni Tübinger

Charmed baryons

- collisions
- First mid-rapidity production measurement at the LHC

- First Ξ_c^0 -production measurement in pp at the LHC
- Yields strongly underestimated by models

- Heavy–flavour hadrons have significant branching ratio to final state with leptons → measure leptons and subtract background
- Both D mesons and heavy–flavour muons show a faster than proportional increase in production with event multiplicity
- Important to study role of multi-parton interactions and interplay of soft and hard processes in heavy-flavour production

D mesons in jets

- <u>d^eσ</u> dp⊤dη q ALICE Preliminary 10 p-Pb, VS_NN = 5.02 TeV Charged Jets, Anti-k_T, R = 0.4, |η | < 0.5 with D^{*+}, p_{1,0}, > 3 GeV/c Data Syst. Unc. (data) POWHEG+PYTHIA6 × Syst. Unc. (theory) 0 ò 10-2 data / theory 10 15 20 25 p_____(GeV/c)
- D-jet measurements in pp and p-Pb collisions
- Closer access to parton kinematics

- Described by theory within uncertainties
- Future studies in Pb–Pb

ALI-PREL-136370

D mesons in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$

- R_{pA} constrains cold-nuclear matter effects
- Measured $R_{\rm pA}$ compatible with unity
- D_s measurement consistent with results for non–strange D mesons

 $\label{eq:QCP} {Q_{\rm{CP}}} = \frac{{{{\left({{d^2}{N^{\rm{promt}}\;D}\left/ {{\rm{dp}_T}{\rm{dy}}} \right)}_{\rm{Pb}}^{0 - 10}}}}{{{{\left({{d^2}{N^{\rm{promt}}\;D}\left/ {{\rm{dp}_T}{\rm{dy}}} \right)}_{\rm{Pb}}^{0 - 100}}} / {\left\langle {{\rm{T}_{\rm{PPb}}} \right\rangle ^{60 - 100}} }}$

- Hint of ${\it Q}_{\rm CP}>1$ for $2 < {\it p}_{\rm T,D} < 8~{
 m GeV}/c$
- Requires model calculations for interpretation

Muons from heavy-flavour hadron decays in p-Pb collisions

Phys. Lett. B 770 (2017) 459-472

- Study of CNM effects at forward/backward rapidity with heavy-flavour decay muons
- Compare forward (p-going, low x in nucleus) and backward Pb-going, larger x in nucleus)
- Significant effects visible in the ratio (3.7 σ)
- Well described by pQCD calculation using EPS09 shadowing

Martin Völkl Uni Tübingen

Azimuthal correlations in p-Pb collisions

- Correlations of D mesons with charged particles
- Adress charm-jet properties
- The near- and away-side peaks agree between pp and p-Pb collisions within the uncertainties

Azimuthal correlations in p-Pb collisions (2)

- Correlations of electrons from heavy–flavour hadron decays with charged particles
- Jet contribution removed by subtracting correlations in low-multiplicity collisions
- Positive v₂ measured vor heavy–flavour decay electrons in p–Pb collisions
- Similar effect size as for light hadrons
- Initial- or final-state effect?

Beauty-hadron decay electrons in p-Pb collisions

- Exploit large decay length for beauty hadrons ($c\tau \approx 500 \ \mu {
 m m}$)
- Selection based on impact parameter reduces background

JHEP 07 (2017) 052

- Subtract non-beauty background contributions
- Resulting nuclear modification factor consistent with unity

D-meson R_{AA} in Pb-Pb collisions

- Strong suppression of non-strange D-meson production at intermediate/high p_T in Pb-Pb collisions
- Data precision sufficient to set important constraints to models

- Hint of higher R_{AA} for D_s^+
- Increase consistent with models at low p_T; expected by models including hadronization via coalescence in strange–quark rich QGP environment

Martin Völkl Uni Tübingen

D-meson elliptic flow in Pb-Pb collisions

- Positive v₂ for D mesons up to 10 GeV/c
- Similar effect for different charm-hadron species
- Similar v₂ for D mesons and charged pions, hint for lower D-meson v₂ at low p_T

Phys. Rev. Lett. 120 (2018) 102301

- Combination of D-meson species
- Models, which describe R_{AA} well, have different degrees of success for v₂

- The most successful models give $1.5 < 2\pi TD_{\rm s}(T) < 7$
- This suggests a thermalization time $\tau_c = 3 14 \text{ fm/c}$
- Hint of positive v_2 for D_s

D meson elliptic flow with event shape engineering

- Large event-by-event fluctuations of elliptic flow
- Quantified by reduced second order flow vector q_2^{TPC}
- q₂^{TPC} grows with multiplicity and strength of flow

- Comparison of q₂^{TPC}-ranges shows significant effect
- Both D meson and $q_2^{\rm TPC}$ from mid-rapidity \rightarrow some autocorrelation will be present

Martin Völkl Uni Tübingen

$R_{\rm AA}$ of muons and electrons from heavy–flavour hadron decays

- *R*_{AA} of muons from heavy–flavour hadron decays at forward rapidity
- *R*_{AA} of heavy–flavour electrons at mid–rapidity
- Similar suppression
- Charm contributes more at low $p_{\rm T}$, beauty at higher $p_{\rm T}$ ($p_{\rm T} > 5~GeV/c$) \rightarrow indication of beauty suppression at high $p_{\rm T}$

Beauty-hadron decay electron R_{AA}

- Impact parameter-based approach
- Information used in template fit to separate electron sources

- Indication of suppression of beauty-hadron decay electrons at high $p_{\rm T}$
- *R*_{AA} described by models within uncertainties

Martin Völkl Uni Tübingen

ALICE Heavy-Flavour

Conclusion and Summary

- Production of heavy flavours in pp collisions is described by pQDC-based calculations
- Significantly more charmed baryons are produced than expected from models
- $R_{\rm pPb}$ consistent with unity for D meson and beauty electron measurements at mid-rapidity
- Deviations from unity in D-meson $Q_{\rm CP}$ and in forward/backward comparison of muons from heavy flavour hadron decays
- D mesons show strong interactions with the medium in Pb–Pb collisions
- $\bullet \ D_s$ meson suppression was also measured
- Indication of suppression for the beauty sector
- Analyses move towards higher accuracy and more complex observables

Appendix: v_2 of Electrons from heavy flavour hadron decays

JHEP 09 (2016) 028