2- AND 3-PION LÉVY FEMTOSCOPY WITH PHENIX

MÁTÉ CSANÁD FOR PHENIX @ WWND 2018, MARCH 30

EÖTVÖS UNIVERSITY, BUDAPEST, HUNGARY

2/25 THE PHENIX EXPERIMENT AND THE BES

- Collision energies: 7.7 to 200 GeV (20-400 MeV in μ_B , 140-170 MeV in T)
- What changes with $\sqrt{S_{NN}}$?

3_{/25} FEMTOSCOPY: THE HBT EFFECT

- R. Hanbury Brown, R. Q. Twiss observing Sirius with radio telescopes
 - Intensity correlations vs detector distance \Rightarrow source size
 - Measure the sizes of apparently point-like sources!
- Goldhaber et al: applicable in high energy physics
 - Momentum correlation C(q) related to source S(r)
 - $C(q) \cong 1 + \left| \int S(r) e^{iqr} dr \right|^2$ (under some assumptions)

correlation function C(q)

|/R|

Measure C(q): map out source space-time geometry on femtometer scale!

diffusion

Anomalous

diffusion

(Lévy flight

4/25 LÉVY DISTRIBUTIONS IN HEAVY ION PHYSICS

- Expanding medium, increasing mean free path: anomalous diffusion Metzler, Klafter, Physics Reports 339 (2000) 1-77, Csanad, Csörgő, Nagy, Braz.J.Phys. 37 (2007) 1002
- Lévy-stable distribution: $\mathcal{L}(\alpha, R; r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$ Normal
 - Generalized Gaussian from generalized central limit theorem
 - $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy
 - Power-law in spatial correlations ~ r $^{-(1+\alpha)}$
- Shape of the correlation functions with Levy source:

 $C_2(q) = 1 + \lambda \cdot e^{-|q_R|^{\alpha}}$ $\alpha = 2$: Gaussian $\alpha = 1$: Exponential

- Critical spatial correlation ~ r $-(d-2-\eta) \rightarrow critical exponent$
 - α alpha can be associated with the critical exponent η? Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042
 - How about dynamics?

5/25 LÉVY INDEX AS A CRITICAL EXPONENT?

- QCD universality class ↔ 3D Ising
 - Halasz et al., Phys.Rev.D58 (1998) 096007
 - Stephanov et al., Phys.Rev.Lett.81 (1998) 4816
- At the critical point:
 - Random field 3D Ising: η = 0.50±0.05
 Rieger, Phys.Rev.B52 (1995) 6659
 - 3D Ising: η = 0.03631(3)
 El-Showk et al., J.Stat.Phys.157 (4-5): 869
- Motivation for precise Lévy HBT!
- Change in α_{Levy} proximity of CEP?
- Modulo finite size/time and non-equilibrium effects
- → what does power law exponent mean?

6/25 LEVY HBT ANALYSIS

- Dataset used for the analysis:
 - Events: Run-10, Au+Au, $\sqrt{s_{NN}}$ = 39 to 200 GeV, varying centrality, zvertex cut
 - Particle identification:
 - time-of-flight data from PbSc East/West, TOF East/West, momentum, flight length
 - 2σ cuts on m² distribution
 - Single track cuts: 2 σ matching cuts in TOF & PbSc for pions
 - Pair-cuts:
 - A random member of pairs assoc. with hits on same tower were removed
 - customary shaped cuts in $\Delta \phi$ Δz plane for Drift Chamber, PbSc East/West, TOF East/West
- $ID(2\pi^{\pm})$ or $3D(3\pi^{\pm})$ corr. func. as a function of Q_{LCMS} in various m_T bins
 - Q_{LCMS} is 3-momentum difference in longitudinal co-moving system
 - Q_{12}, Q_{23}, Q_{31} for the three-particle case
 - Levy fits for 31 m_T bins (0.228 < m_T < 0.871 GeV/c) with Coulomb effect

7₁₂₅ EXAMPLE $C_2(Q_{LCMS})$ CORRELATION FUNCTION

- Measured in 31 m_T bins $O^{1.6}$
- Fitted with Coulombincorporated function
- Coulomb-factor displayed separately
- All fits converged
- Confidence levels all acceptable
- χ values scatter around 0 properly
- Physical parameters: R, λ, α measured versus pair m_T

PHENIX, arXiv:1709.05649

8/25 LÉVY EXPONENT (SHAPE PARAMETER) α

- Measured value far from Gaussian ($\alpha = 2$), inconsistent with expo. ($\alpha = 1$)
- Also far from the random field 3D Ising value at CEP ($\alpha = 0.5$)
- More or less constant (at least within systematic uncertainties)
- What do models and calculations say?

9,25 LÉVY SCALE PARAMETER R

- Similar decreasing trend as Gaussian HBT radii, but it is not an RMS!
- Hydro behavior not invalid
- The linear scaling of I/R^2 , breaks for high m_T ?

PHENIX, arXiv: 1709.05649

O₁₂₅ CORRELATION STRENGTH λ: CORE/HALO

- Two-component source
 - Core: hydrodynamically expanding
 - Halo: lived resonances (≥ 10 fm/c), unresolvable experimentally
 - Define $f_C = N_{\text{core}}/N_{\text{total}}$
- True $q \rightarrow 0$ limit: C(0) = 2
- Apparently $C(q \rightarrow 0) \rightarrow 1 + \lambda$
- $\lambda(m_{\mathrm{T}}) = f_{C}^{2}(m_{\mathrm{T}})$

Bolz et al, Phys.Rev. D47 (1993) 3860-3870 Csörgő, Lörstad, Zimányi, Z.Phys. C71 (1996) 491-497

CORRELATION STRENGTH λ: IN-MEDIUM MASS?

- Connection to chiral restoration
 - Decreased η' mass $\rightarrow \eta'$ enhancement \rightarrow halo enhancement
 - Kinematics: $\eta' \rightarrow \pi \pi \pi \pi$ with low $m_T \rightarrow$ decreased $\lambda(m_T)$ at low m_T
 - Dependence on in-medium η' mass?
 Kapusta, Kharzeev, McLerran, PRD53 (1996) 5028
 Vance, Csörgő, Kharzeev, PRL 81 (1998) 2205
 Csörgő, Vértesi, Sziklai, PRL105 (2010) 182301
 - Results compatible with modified mass!

PHENIX, arXiv: 1709.05649

 $\alpha(m_T)$

0.8

12_{725} NEW SCALING PARAMETER \hat{R}

- Empirically found scaling parameter
- Linear in m_T

0.8 0.9 m_τ [GeV/c²] Physical interpretation: open question

3₇₂₅ LÉVY EXPONENT α VS CENTRALITY AND $\sqrt{s_{NN}}$

March 30, 2018

4/25 LEVY R: SIMILAR HYDRO TRENDS FOR ALL CASES

5_{/25} HOLE IN $\lambda(m_T)$: ALL INVESTIGATED ENERGIES

- Hole apparent for $\sqrt{s_{NN}} \ge 39$ GeV, all centralities
- Due to reduced η' mass?
- Sign for chiral restoration?
- To be cross-checked with photons, dileptons, etc.
- No hole found at SPS (Beker et al., PRL74)
 arXiv:1801.08827

arXiv:1711.06891

6/25 R SCALING: ALL ENERGIES AND CENTRALITIES

7,25 THREE-PION CORRELATIONS: MOTIVATION

- Recall: two particle correlation strength $\lambda = f_c^2$ where $f_c = N_{core}/N_{total}$
- Generalization for higher order correlations: $\lambda_2 = f_C^2$, $\lambda_3 = 2f_C^3 + 3f_C^2$
- If there is partial coherence (p_c) :

$$\lambda_2 = f_C^2 [(1 - p_C)^2 + 2p_C (1 - p_C)]$$

$$\lambda_3 = 2f_C^3 [(1 - p_C)^3 + 3p_C (1 - p_C)^2] + 3f_C^2 [(1 - p_C)^2 + 2p_C (1 - p_C)]$$

- Introduce core-halo independent parameter $\kappa_3 = \frac{\lambda_3 3\lambda_2}{2\sqrt{\lambda_2}^3}$
 - does not depend on f_C
 - $\kappa_3 = 1$ if no coherence
- Finite meson sizes?

Gavrilik, SIGMA 2 (2006) 074 [hep-ph/0512357]

• Phase shift (a la Aharonov-Bohm) in hadron gas?

8/25 EXAMPLE CORRELATION FUNCTION FITS

- Coulomb-correction: generalized Riverside method $K_3(Q_{12}, Q_{23}, Q_{31}) \approx K_2(Q_{12})K_2(Q_{23})K_2(Q_{31})$
- Pure Bose-Einstein part: $1 + \ell_2 \left(e^{-(RQ_{12})^{\alpha}} + e^{-(RQ_{23})^{\alpha}} + e^{-(RQ_{31})^{\alpha}} \right) + \ell_3 e^{-0.5 \left((RQ_{12})^{\alpha} + (RQ_{23})^{\alpha} + (RQ_{31})^{\alpha} \right)}$
- Fitted $\ell_{2,3}$ only, R, α fixed from two-pion results

9/25 THREE-PION CORRELATION STRENGTH

• Core-halo model, with or without coherence: $0 \le \lambda_3 \le 5$

20/25 TEST OF CORE-HALO MODEL / COHERENCE

• Recall: $\kappa_3 = 1$ in pure core-halo model, $\kappa_3 \neq 1$ if coherence

21₇₂₅ DETERMINE CORE AND COHERENCE FRACTION

• Recall:

$$\lambda_2 = f_C^2 [(1 - p_C)^2 + 2p_C (1 - p_C)]$$

$$\lambda_3 = 2f_C^3 [(1 - p_C)^3 + 3p_C (1 - p_C)^2] + 3f_C^2 [(1 - p_C)^2 + 2p_C (1 - p_C)]$$

- Calculate f_C , p_C from $\lambda_{2,3}$ at given m_T
- Strong correlation: test allowed regions on (f_c, p_c) from $\lambda_{2,3}$
- If indeed coherence: should be centrality dependent!
- Higher order correlations?

22_{/25} LÉVY HBT STATUS FROM 39 TO 200 GEV

- Bose-Einstein correlations measured from 39 to 200 GeV
- Levy fits yield statistically acceptable description
- Levy parameters R, λ , α : m_T, centrality and $\sqrt{S_{NN}}$ dependence
 - Scale parameter α : slight m_T and $\sqrt{s_{NN}}$ dependence, non-monotonic vs Npart,
 - Linear scaling of I/R^2 vs m_T \leftrightarrow hydro (but non-Gaussian source!)
 - Low-m_T decrease in $\lambda(m_T)$ down to 39 GeV \leftrightarrow in-medium η ' mass?
 - New, empirically found scaling parameter $\hat{R} = R/(\lambda \cdot (1 + \alpha))$
- Three-particle correlations
 - Consistent with two-pion data
 - Core-halo independent parameter κ_3 : sign of coherence?

23/25 OPEN QUESTIONS

- Collision energy and centrality dependence?
 - Non-monotonicity in $\alpha(\sqrt{s_{NN}})$ or α (centrality)? Hole in $\lambda(m_T)$ at low $\sqrt{s_{NN}}$? Really due to η' ?
 - Lower energies (<39 GeV) currently analyzed, filtering η' decay products investigated
- How does the shape look in 3D (out-side-long)?
 - Is the Lévy exponent still around unity?
 - How are the radii modified as compared to Gaussian ones? The $1/R^2 \sim mT$ scaling still valid?
 - $R_{out}^2 R_{side}^2$ non-monotonicity modified if R is the Lévy scale?
- What about kaons?
 - What is the Lévy exponent for kaons?
 - Kaons have smaller total cross-section thus larger mean free path, heavier tail?
 - Does m_T scaling hold for Lévy scale R?
- Correlation strenght versus core-halo picture: are there other effects?
 - Three-particle correlations may show if coherence or other effects play a role
 - Other effects may also play a role (finite meson sizes, random field phase shift, etc)

24/25 LÉVY HBT WITH PHENIX

25 THANK YOU FOR YOUR ATTENTION

If you are interested in these subjects, come to:

http://zimanyischool.kfki.hu/18

http://indico.ifj.edu.pl/event/199/

26 BACKUP

27₁₂₅ LÉVY VERSUS GAUSS VERSUS EXPONENTIAL

• No tail if $\alpha = 2$, power law if $\alpha < 2$

28/25 PHYSICAL FIT PARAMETER RESULTS

- α: not 0.5
 and not 2.0
- *R*: hydro scaling
- λ: "hole", compatible with mass modification
- *R*: new
 scaling
 variable

29,25 COLL. ENERGY & CENTRALITY DEPENDENCE

- Hole in $\lambda(m_T)$ at lower energies?
 - Filtering of η' decay products to be investigated, based on Eur. Phys. J.A (2011) 47:76
- Non-monotonicity in α vs centrality or s_{NN} ?

30,25 3D ANALYSIS

- B. Kurgyis, M. Csanád
- Lévy radii at 200 GeV:
 - $R_{\text{out}} \approx R_{\text{side}}$ still true for Lévy scales?
 - $1/R^2 \sim m_T$ scaling still true?
- How do Lévy radii change with energy?
 - Non-monotonicity still there in $R_{out}^2 R_{side}^2$?
 - α versus energy in 3D: same as for 1D?
- New results on the way

3 | /25 KAON ANALYSIS

- Kaon PID works well
- Transverse mass scaling of Lévy HBT radii for kaons?
- HRC prediction for kaons:
 - Smaller cross-section, larger mean free path, heavier tail
- New results on the way

