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Reconstruction Challenge in CBM
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• Future fixed-target heavy-ion experiment at FAIR 
• Explore the phase diagram at high net-baryon densities 
• 107 Au+Au collisions/sec 
• ~ 1000 charged particles/collision 
• Non-homogeneous magnetic field 
• Double-sided strip detectors 

• 4D reconstruction of time slices.

(1) Collision (2) Detection (3) Reconstruction

A simplified CBM detector setup
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The full event reconstruction will be done  
on-line at the First-Level Event Selection (FLES) and  
off-line using the same FLES reconstruction package. 

• Cellular Automaton (CA) Track Finder 
• Kalman Filter (KF) Track Fitter 
• KF short-lived Particle Finder 

All reconstruction algorithms are vectorized and parallelized.

(1) Collision (2) Detection (3) Reconstruction

Prof. Dr. Ivan Kisel, Uni-Frankfurt, FIAS, GSI CBM Retreat, 24.06.2017      /2 
 

First Level Event Selection (FLES) Package
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Cellular Automaton (CA) Track Finder

4

770 TracksTop view Front view

Fast and efficient track finder

102 CHAPTER 4. RECONSTRUCTION OF PARTICLES TRAJECTORIES
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4.2 Track finding 105
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Figure 4.25: Track reconstruction e�ciency as a func-

tion of track momentum after the search for tracks with

missing hits due to detector ine�ciency.

Track category E↵, %

All tracks 90.9

Primary high-p 97.5

Primary low-p 92.6

Secondary high-p 91.1

Secondary low-p 63.8

Clone level 0.4

Ghost level 5.9

MC tracks found 134

Time, ms/ev 10

Table 4.5: Track finder

performance after the search

for tracks with missing hits

due to detector ine�ciency.

Figure 4.20: Track reconstruction e�ciency as a function of track momentum and track

finder performance after merging clones.

presented in the table in Fig. 4.20. The clone level has decreased in more than

two times from 1.0% to 0.4% after switching the merger option on.

The results of the CBM CA track finding performance test for the minimum

bias (random value of impact parameter) and central events (zero impact param-

eter) at 25A GeV are summarized in the table in Fig. 4.20.

The majority of signal tracks (decay products of D-mesons, charmonium, light

vector mesons) are particles with momentum higher than 1 GeV/c originating

from the region very close to the collision point. Their reconstruction e�ciency is,

therefore, similar to the e�ciency of high-momentum primary tracks that is equal

to 97.5%. The high-momentum secondary particles, e.g. in decays of K0
s and ⇤

particles and cascade decays of ⌅ and ⌦, are created far from the primary vertex,

therefore their reconstruction e�ciency is lower – 91.1%. Significant multiple

scattering of low-momentum tracks in the material of the detector system and

large curvature of their trajectories lead to lower reconstruction e�ciencies of

92.6% for primary tracks and of 63.8% for secondary low-momentum tracks. The

total e�ciency for all tracks is 90.9% with a large fraction of low-momentum

secondary tracks. The levels of clones and of ghost tracks are 0.4% and 5.9%

respectively.

The behavior of the CA track finder in the case of higher track multiplicity

1
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Kalman Filter (KF) Track Fit
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Intel Xeon E7-4860, 2.27 GHz

Fast, precise and portable Kalman filter track fit

85 tracks/µs

Intel Xeon E7-4860, 2.26 GHz

115 tracks/µs

Nvidia GTX 480, 700 MHz

372 tracks/µs

AMD Radeon HD 7970, 925 MHz

192 tracks/µs

Intel Xeon Phi 7120, 1.2 GHz

• Precise estimation of the parameters of particle trajectories is the core of the reconstruction procedure. 
• The track fit performance on a single node: 2*CPU+2*GPU = 109 tracks/s = (100 tracks/event)* 107 events/s = 107 events/s. 
• One computer is enough to estimate parameters of all particles produced at 107 interaction rate!

2
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CA Track Finder at High Track Multiplicity

6

100 mbias events, <Nreco> = 103405 mbias events, <Nreco> = 572

Reliable reconstruction efficiency and time as a second order polynomial w.r.t. to the track multiplicity
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Au+Au mbias events at 25 AGeV

1 mbias event, <Nreco> = 109

A number of minimum bias events is gathered into a group (super-event), which is then treated by the CA track finder as a single event.

3
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Time-based (4D) Track Reconstruction

7

3D reconstruction time 8.2 ms/event is recovered in 4D case

Sp
ee

d-
up

Speed-up factor due to parallelization within the time-slice

Total CA time = 84 ms

Total CA time = 849 ms 100 mbias events in a time-slice

• The beam in the CBM will have no bunch structure, but continuous. 
• Measurements in this case will be 4D (x, y, z, t).  
• Significant overlapping of events in the detector system.  
• Reconstruction of time slices rather than events is needed.

Ivan Kisel, Uni-Frankfurt, FIAS, GSI ICNFP, Crete, 25.08.2017      /19 
 

Time-based (4D) Track Reconstruction with CA Track Finder
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4D track reconstruction is scalable with the speed-up factor of 10.1; 3D reconstruction time 8.2 ms/event is recovered in 4D case
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Speed-up factor due to parallelization within the time-slice

Total CA time = 84 ms

Total CA time = 849 ms 100 mbias events in a time-slice

• The beam in the CBM will have no bunch structure, but continuous. 
• Measurements in this case will be 4D (x, y, z, t).  
• Significant overlapping of events in the detector system.  
• Reconstruction of time slices rather than events is needed.

The Cellular Automaton (CA) track finder [3] is used to reconstruct tracks of charged particles
inside a time-slice. The reconstruction of each time-slice is performed in parallel between cores
within a CPU, thus minimizing communication between CPUs. After all tracks of the whole
time-slice are found and fitted in 4D, they are collected into clusters of tracks originated from
common primary vertices, which then are fitted, thus identifying 4D interaction points registered
within the time-slice. Secondary tracks are associated with primary vertices according to their
estimated production time. After that short-lived particles are found and the full event building
process is finished. The last stage of the FLES package is a selection of events according to the
requested trigger signatures.

2. Cellular Automaton Track Finder Algorithm at High Track Multiplicities

The CA method, being a local one, suppresses combinatorial enumeration by building short track
segments at the first stage before starting main combinatorial search (1). These track segments,
so-called cells, have a higher dimensionality, than measurements have. After this stage is finished
the CA track finder never goes back to processing hits information again, working only with
created track segments instead. Taking into account the track model, the method searches for
neighboring cells, which share a hit in common and have the same direction within some error,
and, thus, potentially belong to one track. During this neighbors search the track finder also
estimates a possible position of the segment in the track (2). Beginning with the first station
the track finder goes to the last station moving from one neighbor to the next one assigning to
each segment a counter, which stores number of neighbors to the left. Starting with a segment
of a largest position counter the track finder follows a chains of neighbors collecting segments
into a track candidate (3). As a result one gets a tree structure of track candidates. In the last
stage (4) the competition between the track candidates takes place: only the longest tracks with
the best �2-value sharing no hits in common with better candidates are to survive.

Since the CBM experiment will operate at extremely high interaction rates, di↵erent collisions
may overlap in time with no possibility to separate them in a trivial way. Thus, the need to
analyze so-called time-slices, which contain information from a number of collisions, rather than
isolated events arises.

The reasons, mentioned above, bring us to introducing the concept of time-slice to the
reconstruction procedure. As a first step on a way towards the time-slice reconstruction we
introduce a super-event consisting of packed minimum bias events with no time information
taken into account. To create such a group we combine space coordinates of STS hits from a
number (from 1 up to 100) AuAu minimum bias events at 25 AGeV ignoring such information
as event number or time measurements.

E�ciency, % 3D 3+1 D 4D

All tracks 83.8 80.4 83.0

Primary high-p 96.1 94.3 92.8

Primary low-p 79.8 76.2 83.1

Secondary high-p 76.6 65.1 73.2

Secondary low-p 40.9 34.9 36.8

Clone level 0.4 2.5 1.7

Ghost level 0.1 8.2 0.3

Time/event/core, ms 8.2 31.5 8.5

Table 1. Track reconstruction performance
for 100 minimum bias AuAu collisions at
25 AGeV in case of event-by-event analysis
(3D), grouped on a hit level with no
time information (3+1 D) and time-based
reconstruction (4D).

The super-event was treated by the CA track finder as a regular event and the reconstruction

2
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Time-based (4D) Track Reconstruction with CA Track Finder
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4D track reconstruction is scalable with the speed-up factor of 10.1; 3D reconstruction time 8.2 ms/event is recovered in 4D case
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• The beam in the CBM will have no bunch structure, but continuous. 
• Measurements in this case will be 4D (x, y, z, t).  
• Significant overlapping of events in the detector system.  
• Reconstruction of time slices rather than events is needed.

The Cellular Automaton (CA) track finder [3] is used to reconstruct tracks of charged particles
inside a time-slice. The reconstruction of each time-slice is performed in parallel between cores
within a CPU, thus minimizing communication between CPUs. After all tracks of the whole
time-slice are found and fitted in 4D, they are collected into clusters of tracks originated from
common primary vertices, which then are fitted, thus identifying 4D interaction points registered
within the time-slice. Secondary tracks are associated with primary vertices according to their
estimated production time. After that short-lived particles are found and the full event building
process is finished. The last stage of the FLES package is a selection of events according to the
requested trigger signatures.

2. Cellular Automaton Track Finder Algorithm at High Track Multiplicities

The CA method, being a local one, suppresses combinatorial enumeration by building short track
segments at the first stage before starting main combinatorial search (1). These track segments,
so-called cells, have a higher dimensionality, than measurements have. After this stage is finished
the CA track finder never goes back to processing hits information again, working only with
created track segments instead. Taking into account the track model, the method searches for
neighboring cells, which share a hit in common and have the same direction within some error,
and, thus, potentially belong to one track. During this neighbors search the track finder also
estimates a possible position of the segment in the track (2). Beginning with the first station
the track finder goes to the last station moving from one neighbor to the next one assigning to
each segment a counter, which stores number of neighbors to the left. Starting with a segment
of a largest position counter the track finder follows a chains of neighbors collecting segments
into a track candidate (3). As a result one gets a tree structure of track candidates. In the last
stage (4) the competition between the track candidates takes place: only the longest tracks with
the best �2-value sharing no hits in common with better candidates are to survive.

Since the CBM experiment will operate at extremely high interaction rates, di↵erent collisions
may overlap in time with no possibility to separate them in a trivial way. Thus, the need to
analyze so-called time-slices, which contain information from a number of collisions, rather than
isolated events arises.

The reasons, mentioned above, bring us to introducing the concept of time-slice to the
reconstruction procedure. As a first step on a way towards the time-slice reconstruction we
introduce a super-event consisting of packed minimum bias events with no time information
taken into account. To create such a group we combine space coordinates of STS hits from a
number (from 1 up to 100) AuAu minimum bias events at 25 AGeV ignoring such information
as event number or time measurements.

E�ciency, % 3D 3+1 D 4D

All tracks 83.8 80.4 83.0

Primary high-p 96.1 94.3 92.8

Primary low-p 79.8 76.2 83.1

Secondary high-p 76.6 65.1 73.2

Secondary low-p 40.9 34.9 36.8

Clone level 0.4 2.5 1.7

Ghost level 0.1 8.2 0.3

Time/event/core, ms 8.2 31.5 8.5

Table 1. Track reconstruction performance
for 100 minimum bias AuAu collisions at
25 AGeV in case of event-by-event analysis
(3D), grouped on a hit level with no
time information (3+1 D) and time-based
reconstruction (4D).

The super-event was treated by the CA track finder as a regular event and the reconstruction
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4D Event Building at 10 MHz

Reconstructed tracks clearly represent groups, which correspond to the original events: 
85% of single events, no splitted events, further analysis with TOF information at the vertexing stage 

Hits 0.1 MHz Hits 1 MHz Hits 10 MHz

Hits at high input rates

(1) Hits 10 MHz (2) Tracks (3) Events

From hits to tracks to events

3
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KF Particle: Reconstruction short-lived Particles
Concept: 

• Mother and daughter particles have the same state 
vector and are treated in the same way 

• Reconstruction of decay chains 
• Kalman filter based 
• Geometry independent 
• Vectorized 
• Uncomplicated usage

9

KFParticle Lambda(P, Pi);                               // construct anti Lambda 
Lambda.SetMassConstraint(1.1157);              // improve momentum and mass 
KFParticle Omega(K, Lambda);                      // construct anti Omega 
PV -= (P; Pi; K);                                               // clean the primary vertex 
PV += Omega;                                                // add Omega to the primary vertex 
Omega.SetProductionVertex(PV);                  // Omega is fully fitted 
(K; Lambda).SetProductionVertex(Omega);   // K, Lambda are fully fitted 
(P; Pi).SetProductionVertex(Lambda);            // p, pi are fully fitted

KF Particle provides a simple and direct approach to physics analysis (used in CBM, ALICE and STAR)

Functionality: 
• Construction of short-lived particles 
• Addition and subtraction of particles 
• Transport 
• Calculation of an angle between particles 
• Calculation of distances and deviations 
• Constraints on mass, production point and decay length 
• KF Particle Finder

Ω̅+        Λ̅ K+

p̅ π+

Simulated AuAu collision at 25 AGeV

π+

Κ+

p

Ω+ Λ

n

π-

Σ-

Reconstruction of decays with a neutral daughter 
by the missing mass method:

4
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KF Particle Finder block-diagram

3

Dileptons

Charmonium 
J/ψ → e+ e-   
J/ψ  → µ+ µ-  

Low mass 
vector mesons 
ρ  → e+ e-   
ρ  → µ+ µ-   
ω  → e+ e-   
ω  → µ+ µ-   
ϕ → e+ e-    
ϕ → µ+ µ-   

Gamma 
γ  → e+ e-  

Gamma-decays 
π0  → γ γ 
η → γ γ  

Charged particles: e±, µ±, π±, K±, p±, d±, 3He±, 4He±

Open-charm

Open-charm 
resonances 

D*0  → D+ π- 

D̅*0  → D- π+ 

D*+  → D0 π+  

D*-  → D̅0 π- 

Open-charm 
particles 

D0 → K- π+   

D0 → K- π+ π+ π-   

D̅0  → K+ π- 

D̅0 → K+ π+ π- π-   

D+ → K- π+ π+  

D- → K+ π- π-   

Ds
+ → K+ K- π+ 

Ds
- → K+ K- π- 

Λc
+ → p K- π+ 

Λ̅c
- → p̅ K- π+

Hypermatter

Heavy multi-
strange objects 

{ΛΛ} → Λ p π- 
  

{Ξ0Λ} → Λ Λ

Hypernuclei 
{Λn} → d+ π-  
{Λ̅n̅} → d- π+  
{Λnn} → t+ π- 

{Λ̅n̅n̅} → t- π+ 

3ΛH → 3He π-    
3ΛH̅ → 3He π+    
4ΛH → 4He π-    
4ΛH̅ → 4He π+    

4ΛHe → 3He p π-   
4ΛHe → 3He p̅ π+   
5ΛHe → 4He p π-   
5ΛHe → 4He p̅ π+  

Strange particles

K*+ → K+ π0  

K*- → K- π0   

K*0 → K0 π0   

Σ*0 → Λ π0    

Σ̅*0 → Λ̅ π0    

Ξ*- → Ξ- π0     

Ξ̅*+ → Ξ̅+ π0   

Ξ*0  → Ξ- π+  

Ξ̅*0  → Ξ̅+ π-  

Ω*-  → Ξ- K- π+  
Ω̅*+  → Ξ̅+ K+ π- 

K*+ → K0
s π+   

K*-  → K0
s π-   

Σ*+  → Λ π+   

Σ̅*-  → Λ̅ π-    

Σ*-  → Λ π-    

Σ̅*+  → Λ̅ π+   

Ξ*-  → Λ K-   

Ξ̅*+  → Λ̅ K+  

K*0  → K+ π- 

K̅*0  → K- π+ 

ϕ  → K+ K-    
Λ*  → p K-  
Λ̅*  → p̅ K+ 

K0
s → π+ π- 
 

K+
 → µ+ νµ 
  

K-
 → µ- ν̅µ 
   

K+
 → π+ π0 
  

K-
 → π- π0 
   

Λ  → p π-   
Λ̅ → p̅ π+    
Σ+

 → p π0 
   

Σ̅-
 → p̅ π0 
    

Σ+
 → n π+ 
   

Σ̅-
 → n̅ π- 
    

Σ-
 → n π- 
    

Σ̅+
 → n̅ π+
   

Ξ-  → Λ π- 

Ξ̅+ → Λ̅ π+   

Ξ-  → Λ π- 

Ξ̅+ → Λ̅ π+   

Ω-  → Λ K-  

Ω̅+ → Λ̅ K+  

Ω-  → Λ K-  

Ω̅+ → Λ̅ K+  

Ω-  → Ξ0 π-  

Ω̅+ → Ξ̅0 π+ 

Σ+ → p π0    

Σ̅- → p̅ π0     

Σ0 → Λ γ    

Σ̅0 → Λ̅ γ    

Ξ0 → Λ π0    

Ξ̅0 → Λ̅ π0   

Strange resonances
Double-Λ 

hypernuclei 
4ΛΛH → 4ΛHe π-   
4ΛΛH → 3ΛH p π-   
5ΛΛH → 5ΛHe π-   
4ΛΛHe → 5ΛHe p π+

π+ → µ+ νµ    
π- → µ- ν̅µ     
ρ → π+ π-      
Δ0  → p π-   
Δ̅0  → p̅ π+   
Δ++  → p π+ 

Δ̅--  → p̅ π- 

Neutral particles: νµ, ν̅µ, π0, n, n̅, Λ, Λ̅, Ξ0, Ξ̅0

Light mesons 
and baryons

KF Particle Finder for Physics Analysis and Selection

10
( mbias: 1.4 ms; central: 10.5 ms )/event/core

4

M. Zyzak, P. Kisel



Ivan Kisel, Uni-Frankfurt, FIAS, GSI WWND, Guadeloupe, 28.03.2018      /18 
 

KF Particle Finder for Physics Analysis and Selection
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Physics coverage

4
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J/ψ → e+ e-   
J/ψ  → µ+ µ-  

Low mass 
vector mesons 
ρ  → e+ e-   
ρ  → µ+ µ-   
ω  → e+ e-   
ω  → µ+ µ-   
ϕ → e+ e-    
ϕ → µ+ µ-   

Gamma 
γ  → e+ e-  

Gamma-decays 
π0  → γ γ 
η → γ γ  

Charged particles: e±, µ±, π±, K±, p±, d±, 3He±, 4He±

Open-charm

Open-charm 
resonances 

D*0  → D+ π- 

D̅*0  → D- π+ 

D*+  → D0 π+  

D*-  → D̅0 π- 

Open-charm 
particles 

D0 → K- π+   

D0 → K- π+ π+ π-   

D̅0  → K+ π- 

D̅0 → K+ π+ π- π-   

D+ → K- π+ π+  

D- → K+ π- π-   

Ds
+ → K+ K- π+ 

Ds
- → K+ K- π- 

Λc
+ → p K- π+ 

Λ̅c
- → p̅ K- π+

Hypermatter

Heavy multi-
strange objects 

{ΛΛ} → Λ p π- 
  

{Ξ0Λ} → Λ Λ

Hypernuclei 
{Λn} → d+ π-  
{Λ̅n̅} → d- π+  
{Λnn} → t+ π- 

{Λ̅n̅n̅} → t- π+ 

3ΛH → 3He π-    
3ΛH̅ → 3He π+    
4ΛH → 4He π-    
4ΛH̅ → 4He π+    

4ΛHe → 3He p π-   
4ΛHe → 3He p̅ π+   
5ΛHe → 4He p π-   
5ΛHe → 4He p̅ π+  

Strange particles

K*+ → K+ π0  

K*- → K- π0   

K*0 → K0 π0   

Σ*0 → Λ π0    

Σ̅*0 → Λ̅ π0    

Ξ*- → Ξ- π0     

Ξ̅*+ → Ξ̅+ π0   

Ξ*0  → Ξ- π+  

Ξ̅*0  → Ξ̅+ π-  

Ω*-  → Ξ- K- π+  
Ω̅*+  → Ξ̅+ K+ π- 

K*+ → K0
s π+   

K*-  → K0
s π-   

Σ*+  → Λ π+   

Σ̅*-  → Λ̅ π-    

Σ*-  → Λ π-    

Σ̅*+  → Λ̅ π+   

Ξ*-  → Λ K-   

Ξ̅*+  → Λ̅ K+  

K*0  → K+ π- 

K̅*0  → K- π+ 

ϕ  → K+ K-    
Λ*  → p K-  
Λ̅*  → p̅ K+ 

K0
s → π+ π- 
 

K+
 → µ+ νµ 
  

K-
 → µ- ν̅µ 
   

K+
 → π+ π0 
  

K-
 → π- π0 
   

Λ  → p π-   
Λ̅ → p̅ π+    
Σ+

 → p π0 
   

Σ̅-
 → p̅ π0 
    

Σ+
 → n π+ 
   

Σ̅-
 → n̅ π- 
    

Σ-
 → n π- 
    

Σ̅+
 → n̅ π+
   

Ξ-  → Λ π- 

Ξ̅+ → Λ̅ π+   

Ξ-  → Λ π- 

Ξ̅+ → Λ̅ π+   

Ω-  → Λ K-  

Ω̅+ → Λ̅ K+  

Ω-  → Λ K-  

Ω̅+ → Λ̅ K+  

Ω-  → Ξ0 π-  

Ω̅+ → Ξ̅0 π+ 

Σ+ → p π0    

Σ̅- → p̅ π0     

Σ0 → Λ γ    

Σ̅0 → Λ̅ γ    

Ξ0 → Λ π0    

Ξ̅0 → Λ̅ π0   

Strange resonances
Double-Λ 
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All main physics observables are covered by the CBM reconstruction
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Clean Probes of Collision Stages
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AuAu, 10 AGeV, 3.5M central UrQMD events, MC PID

Messengers from the dense fireball: 
CBM at SIS100  

 

UrQMD transport calculation  Au+Au 10.7 A GeV 

Ξ-, Ω-, φ 

e+e-, μ+μ- 

p, Λ, Ξ+, Ω+, J/ψ π, K, Λ, ... 

resonance decays 
e+e-, μ+μ- e+e-, μ+μ- 

The measurement of very low production rates  
requires extremely high reaction rates ! 

ε = 66.1%

ε = 63.5%

ε = 44.4%ε = 57.0%

ε = 47.6% ε = 44.2%
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5M central AuAu UrQMD events at 10 AGeV with realistic PID
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Clean Probes of Collision Stages
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Effective Temperature for Ξ-
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The inverse slope parameter (the effective temperature) of the transverse mass distribution for Ξ-  
Teff ≈ 150 MeV (PHSD) and Teff ≈ 200 MeV (UrQMD)

UrQMD

5M central AuAu, 10 AGeV

I. Vassiliev

5
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Real-Time Physics Analysis
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V. Vovchenko
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CBM Online Physics Analysis

20

Stages of collision Models for different stages

Final momentum spectrum (Blast-Wave, Tsallis, …)

Statistical-thermal models for chemical freeze-out  
(ideal hadron gas, Van der Waals hadron gas, Hagedorn states, …)

Relativistic hydrodynamics (ideal, viscous; (0+1)D, (1+1)D, (3+1)D, …)

Initial stage (Glauber, CGC, …)

Motivation:   
• determination of physical properties of QCD matter created in HIC (temperature, flow, phase transitions, …),  
• obtain limits of applicability of different models 

A package to extract the parameters of theoretical models in CBM experiment is implemented

Extraction of parameters of theoretical models from measured data.
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CBM Online Physics Analysis
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Stages of collision Models for different stages

Final momentum spectrum (Blast-Wave, Tsallis, …)

Statistical-thermal models for chemical freeze-out  
(ideal hadron gas, Van der Waals hadron gas, Hagedorn states, …)

Relativistic hydrodynamics (ideal, viscous; (0+1)D, (1+1)D, 
(3+1)D, …)

Initial stage (Glauber, CGC, …)

Motivation:   
• determination of physical properties of QCD matter created in HIC (temperature, flow, phase transitions, …),  
• obtain limits of applicability of different models 

A package to extract the parameters of theoretical models in CBM experiment is implemented

Direct way: 

Inverse way:

(1) Direct way: 
(2) Inverse way:

Ivan Kisel, Uni-Frankfurt, FIAS 596. WE-Heraeus-Seminar, Bad Honnef, 07.09.2015      /24 

CBM Online Physics Analysis

20

Stages of collision Models for different stages

Final momentum spectrum (Blast-Wave, Tsallis, …)

Statistical-thermal models for chemical freeze-out  
(ideal hadron gas, Van der Waals hadron gas, Hagedorn states, …)

Relativistic hydrodynamics (ideal, viscous; (0+1)D, (1+1)D, 
(3+1)D, …)

Initial stage (Glauber, CGC, …)

Motivation:   
• determination of physical properties of QCD matter created in HIC (temperature, flow, phase transitions, …),  
• obtain limits of applicability of different models 

A package to extract the parameters of theoretical models in CBM experiment is implemented

Direct way: 

Inverse way:

(1) Direct way: 
(2) Inverse way:

Direct approach

Inverse approach

	 E.-by-E. yield estimate incl. acceptance (Blast-Wave) E.-by-E. impact parameter (Glauber)

A package to estimate the medium parameters is implemented
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Consolidate Efforts: A Common Reconstruction Package
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ALICE (CERN)

CBM (FAIR)

STAR (BNL)

PANDA (FAIR)
STS CA Track Finder 
KF Track Fitter 
KF Particle Finder

STS/HFT CA Track Finder 
KF Particle Finder

ITS CA Track Finder 
KF Particle Finder

HFT/ITS CA Track Finder 
TPC CA Track Finder 
KF Particle Finder

HFT CA Track Finder 
KF Particle Finder
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Search for short-lived Particles in CBM and STAR
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Within the FAIR Phase-0 program the CBM KF Particle Finder has been adapted to STAR and applied to real data of 2014, 2016 and BES-I.
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KFParticle: Reconstruction of Vertices and Decayed Particles

Concept: 
• Mother and daughter particles have the same state 

vector and are treated in the same way 
• Reconstruction of decay chains 
• Kalman filter based 
• Geometry independent 
• Vectorized 
• Uncomplicated usage

11

3

KFParticle Lambda(P, Pi);                               // construct anti Lambda 
Lambda.SetMassConstraint(1.1157);              // improve momentum and mass 
KFParticle Omega(K, Lambda);                      // construct anti Omega 
PV -= (P; Pi; K);                                               // clean the primary vertex 
PV += Omega;                                                // add Omega to the primary vertex 
Omega.SetProductionVertex(PV);                  // Omega is fully fitted 
(K; Lambda).SetProductionVertex(Omega);   // K, Lambda are fully fitted 
(P; Pi).SetProductionVertex(Lambda);            // p, pi are fully fitted

KFParticle provides uncomplicated approach to physics analysis (used in CBM, ALICE and STAR)

r = { x, y, z, px, py, pz, E } 

Position, direction, momentum 
and energyState vector

Functionality: 
• Construction of short-lived particles 
• Addition and subtraction of particles 
• Transport 
• Calculation of an angle between particles 
• Calculation of distances and deviations 
• Constraints on mass, production point and decay length 
• KF Particle Finder

Ω̅+        Λ̅ K+

p̅ π+

Simulated AuAu collision at 25 AGeV

π+

Κ+

p

Ω+ Λ

Dileptons

Charmonium 
J/ψ → e+ e- 

J/ψ  → µ+ µ- 
Low mass 

vector mesons 
ρ  → e+ e- 

ρ  → µ+ µ- 

ω  → e+ e- 

ω  → µ+ µ- 

ϕ → e+ e- 

ϕ → µ+ µ-

Gamma 
γ  → e+ e- 

Gamma-decays 
π0  → γ γ 
η → γ γ

Charged particles: e±, µ±, π±, K±, p±, d±, 3He±, 4He±

Open-charm

Open-charm 
resonances 

D*0  → D+ π- 

D̅*0  → D- π+ 

D*+  → D0 π+  

D*-  → D̅0 π-

Open-charm 
particles 

D0 → K- π+ 

D0 → K- π+ π+ π- 

D̅0  → K+ π- 

D̅0 → K+ π+ π- π- 

D+ → K- π+ π+ 

D- → K+ π- π- 

Ds
+ → K+ K- π+ 

Ds
- → K+ K- π- 

Λc
+ → p K- π+ 

Λ̅c
- → p̅ K- π+

Hypermatter

Heavy multi-
strange objects 

{ΛΛ} → Λ p π- 

{Ξ0Λ} → Λ Λ

Hypernuclei 
{Λn} → d+ π- 

{Λ̅n̅} → d- π+ 

{Λnn} → t+ π- 

{Λ̅n̅n̅} → t- π+ 

3ΛH → 3He π- 

3ΛH̅ → 3He π+ 

4ΛH → 4He π- 

4ΛH̅ → 4He π+ 

4ΛHe → 3He p π- 

4ΛHe → 3He p̅ π+ 

5ΛHe → 4He p π- 

5ΛHe → 4He p̅ π+

Strange particles

K*+ → K+ π0 
K*- → K- π0 
K*0 → K0 π0 
Σ*0 → Λ π0 
Σ̅*0 → Λ̅ π0 

Ξ*- → Ξ- π0 

Ξ̅*+ → Ξ̅+ π0
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s π- 

Σ*+  → Λ π+ 
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Σ*-  → Λ π- 
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Ξ*-  → Λ K- 

Ξ̅*+  → Λ̅ K+

K*0  → K+ π- 
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ϕ  → K+ K- 

Λ*  → p K- 

Λ̅*  → p̅ K+

K0
s → π+ π- 

K+
 → µ+ νµ 

K-
 → µ- ν̅µ 

K+
 → π+ π0 

K-
 → π- π0 

Λ  → p π- 

Λ̅ → p̅ π+ 

Σ+
 → p π0 

Σ̅-
 → p̅ π0 

Σ+
 → n π+ 

Σ̅-
 → n̅ π- 

Σ-
 → n π- 

Σ̅+
 → n̅ π+

Ξ-  → Λ π- 
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Ξ̅0 → Λ̅ π0

Strange resonances
Double-Λ 

hypernuclei 
4ΛΛH → 4ΛHe π- 

4ΛΛH → 3ΛH p π- 

5ΛΛH → 5ΛHe π- 

6ΛΛHe → 5ΛHe p π+

π+ → µ+ νµ 

π- → µ- ν̅µ 

ρ → π+ π- 

Δ0  → p π- 

Δ̅0  → p̅ π+ 

Δ++  → p π+ 

Δ̅--  → p̅ π-

Neutral particles: νµ, ν̅µ, π0, n, n̅, Λ, Λ̅, Ξ0, Ξ̅0

Light mesons 
and baryons
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CBM, 5M central Au+Au, 10 AGeV, PHSD STAR, 1.3M mbias Au+Au, 200 AGeV, Run 2016

preliminary preliminary

Preparation for the real-time physics analysis during the BES-II runs is in progress
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Summary

18

✓ CBM will explore the QCD phase diagram in the region of high net-baryon densities at 107 interaction rate. 
✓ The fast and efficient First Level Event Selection (FLES) package (107 → 103) has been developed for the CBM experiment. 

✓ The KF particle finder provides clean reconstruction of short-lived particles produced at different stages of heavy-ion collisions. 

✓ The KF particle finder is ported to STAR for the real-time physics analysis in BES-II. 

✓ Still many things have to be implemented:  

» TMVA multi-variate analysis, centrality classification, elliptic flow calculation, etc.  

» Which other properties of the collision medium can be estimated online? 

» How to compare them with the theoretical models in real time?

Prof. Dr. Ivan Kisel, Uni-Frankfurt, FIAS, GSI CBM Retreat, 24.06.2017      /2 
 

First Level Event Selection (FLES) Package
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CA Track Finder

KF Track Fit

Event Builder

KF Particle Finder

Physics Analysis

Event Selection

FLES

OutputMonte-Carlo

Histograms

Efficiency

InputGeometry Measurements

Phase-0 BES-II

CBM (FAIR) STAR (BNL)
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