
Scalla/xrootdScalla/xrootd
2009 Developments2009 Developments

Andrew Hanushevsky
SLAC National Accelerator Laboratory

Stanford University
12-October-2009

CERN Update

http://xrootd.slac.stanford.edu/

2

Outline

System Component Summary
Recent Developments
Scalability, Stability, & Performance

ATLAS Specific Performance Issues
Faster I/O

The SSD Option
Future Developments

3

Recap Of The Components
xrootd

Provides actual data access
cmsd

Glues multiple xrootd’s into a cluster
XrdCnsd

Glues multiple name spaces into one name space
BeStMan

Provides SRM v2+ interface and functions
FUSE

Exports xrootd as a file system for BeStMan
GridFTP

Grid data access either via FUSE or POSIX Preload Library

4

Recent 2009 Developments

April: File Residency Manager (FRM)
May: Torrent WAN transfers
June: Auto summary monitoring data
July: Ephemeral files
August: Composite Name Space rewrite

Implementation of SSI (Simple Server Inventory)

September: SSD Testing & Accommodation

5

File Residency Manager (FRM)

Functional replacement for MPS1 scripts
Currently, includes…

Pre-staging daemon frm_pstgd and agent frm_pstga
Distributed copy-in prioritized queue of requests
Can copy from any source using any transfer agent
Used to interface to real and virtual MSS’s

frm_admin command
Audit, correct, and obtain space information

• Space token names, utilization, etc.
Can run on a live system

Missing frm_migr and frm_purge
1Migration

Purge
Staging

6

Torrent WAN Transfers
The xrootd already supports parallel TCP paths

Significant improvement in WAN transfer rate
Specified as xrdcp –S num

New Xtreme copy mode option
Uses multiple data sources bit torrent-style

Specified as xrdcp –x
Transfers to CERN; examples:

1 source (.de): 12MB/sec (1 stream)
1 source (.us): 19MB/sec (15 streams)
4 sources (3 x .de + .ru): 27MB/sec (1 stream each)
4 sources + || streams: 42MB/Sec (15 streams each)
5 sources (3 x .de + .it + .ro): 54MB/Sec (15 streams each)

cmsdcmsd

xrootdxrootd

SLAC
Cluster

7

Torrents With Globalization

cmsdcmsd

xrootdxrootd

UTA
Cluster

cmsdcmsd

xrootdxrootd

UOM
Cluster

cmsdcmsd

xrootdxrootd

BNL all.role meta manager
all.manager meta atlas.bnl.gov:1312

Meta Managers can be
geographically replicated!

all.manager meta atlas.bnl.gov:1312 all.manager meta atlas.bnl.gov:1312 all.manager meta atlas.bnl.gov:1312
all.role manager all.role manager all.role manager

xrdcp –x xroot://atlas.bnl.gov//myfile /tmp

/myfile /myfile

Manual Torrents

Globalization simplifies torrents
All real-time accessible copies participate

Each contribution is relative to each file’s transfer rate

Will be implementing manual torrents
Broadens the scope of xrdcp

Though not as simple or reliable as global clusters

xrdcp –x xroot://host1,host2,…/path . . .
Future extended syntax

8

9

Summary Monitoring
xrootd has built-in summary & detail monitoring
Can now auto-report summary statistics

Specify xrd.report configuration directive
Data sent to one or two locations

Accommodates most current monitoring tools
Ganglia, GRIS, Nagios, MonALISA, and perhaps more

Requires external xml-to-monitor data convertor
Can use provided stream multiplexing and xml parsing tool

mpxstats
• Outputs simple key-value pairs to feed a monitor script

Summary Monitoring Setup

10

Data Data
ServersServers

Monitoring Monitoring
HostHost

mpxstats

xrd.report monhost:1999 all every 15s

monhost:1999

ganglia

11

Ephemeral Files
Files that persist only when successfully closed

Excellent safeguard against leaving partial files
Application, server, or network failures

E.g., GridFTP failures

Server provides grace period after failure
Allows application to complete creating the file

Normal xrootd error recovery protocol
Clients asking for read access are delayed
Clients asking for write access are usually denied

• Obviously, original creator is allowed write access
Enabled via xrdcp –P option or ofs.posc CGI element

Composite Cluster Name Space

Xrootd add-on to specifically accommodate
users that desire a full name space “ls”

XrootdFS via FUSE
SRM

Rewrite added two features
Name space replication
Simple Server Inventory (SSI)

12

Composite Cluster Name Space

13

Redirector
xrootd@myhost:1094

Name Space
xrootd@myhost:2094

Data Data
ServersServers

ManagerManager

XrdCnsd

ofs.notify closew, create, mkdir, mv, rm, rmdir |/opt/xrootd/etc/XrdCnsd

open/trunc
mkdir
mv
rm
rmdir

opendir() refers to the directory structure maintained by xrootd:2094

Client

Name Space
xrootd@urhost:2094

Redirector
xrootd@urhost:1094

XrdCnsd can now be run stand-
alone to manually re-create a

name space or inventory

Replicated Name Space

Resilient implementation
Variable rate rolling log files

Can withstand multiple redirector failures w/o data loss
Does not affect name space accuracy on working redirectors

Log files used to capture server inventory
Inventory complete to within a specified window

Name space and inventory logically tied
But can be physically distributed if desired

14

15

Simple Server Inventory (SSI)

A central file inventory of each data server
Does not replace PQ2 tools (Neng Xu, Univerity of Wisconsin)

Good for uncomplicated sites needing a server inventory
Can be replicated or centralized
Automatically recreated when lost

Easy way to re-sync inventory and new redirectors
Space reduced flat ASCII text file format

LFN, Mode, Physical partition, Size, Space token

The cns_ssi Command

Multi-function SSI tool
Applies server log files to an inventory file

Can be run as a cron job

Provides ls-type formatted display of inventory
Various options to list only desired information

Displays inventory & name space differences
Can be used as input to a “fix-it” script

16

17

Performance I
Following figures are based on actual measurements

These have also been observed by many production sites
E.G., BNL, IN2P3, INFN, FZK, RAL , SLAC

Figures apply only to the referencereference implementation
Other implementations vary significantly

Castor + xrootd protocol driver
dCache + native xrootd protocol implementation
DPM + xrootd protocol driver + cmsd XMI
HDFS + xrootd protocol driver

18

Performance II
Latency Capacity vs. Load

xrootd latency < 10µs → network or disk latency dominates
Practically, at least ≈100,000 Ops/Second with linear scaling

xrootd+cmsd latency (not shown) 350µs →»2000 opens/second

Sun V20z 1.86 GHz dual Opteron 2GB RAM
1Gb on board Broadcom NIC (same subnet)

Linux RHEL3 2.4.21-2.7.8ELsmp

19

Performance & Bottlenecks

High performance + linear scaling
Makes client/server software virtually transparent

A 50% faster xrootd yields 3% overall improvement
Disk subsystem and network become determinants

This is actually excellent for planning and funding

Transparency makes other bottlenecks apparent
Hardware, Network, Filesystem, or Application

Requires deft trade-off between CPU & Storage resources
But, bottlenecks usually due to unruly applications

Such as ATLAS analysis

20

ATLAS Data Access Pattern

21

ATLAS Data Access Impact

Sun Fire 4540 2.3GHz dual 4core Opteron 32GB RAM
2x1Gb on board Broadcom NIC

SunOS 5.10 i86pc + ZFS
9 RAIDz vdevs each on 5/4 SATA III 500GB 7200rpm drives

350 Analysis jobs using simulated & cosmic data at IN2P3

22

ATLAS Data Access Problem
Atlas analysis is fundamentally indulgent

While xrootd can sustain the load the H/W & FS cannot
Replication?

Except for some files this is not a universal solution
The experiment is already disk space insufficient

Copy files to local node for analysis?
Inefficient, high impact, and may overload the LAN
Job will still run slowly and no better than local cheap disk

Faster hardware (e.g., SSD)?
This appears to be generally cost-prohibitive

That said, we are experimenting with smart SSD handling

23

Faster ScallaScalla I/O (The SSD Option)

Latency only as good as the hardware (xrootdxrootd adds < 10µs latency)

ScallaScalla component architecture fosters experimentation
Research on intelligently using SSD devices

DiskDisk

XrootdXrootd

DiskDisk

XrootdXrootd
R/O Disk Block CacheR/O Disk Block CacheR/O Disk Block Cache

R/O Disk File CacheR/O Disk File CacheR/O Disk File Cache
ZFS Specific

ZFS caches disk blocks
via its ARC1

Xrootd I/O:
Data sent from RAM/Flash
Data received sent to Disk FS Agnostic

Xrootd caches files
Xrootd I/O:

Data sent from RAM/Flash
Data received sent to Disk

1Adaptive Replacement Cache

24

ZFS Disk Block Cache Setup
Sun X4540 Hardware

2x2.3GHz Qcore Opterons, 32GB RAM, 48x1TB 7200 RPM SATA

Standard Solaris with temporary update 8 patch
ZFS SSD cache not support until Update 8

I/O subsystem tuned for SSD
Exception: used 128K read block size

This avoided a ZFS performance limitation
Two FERMI/GLAST analysis job streams

First stream after reboot to seed ZFS L2ARC
Same stream re-run to obtain measurement

Disk vs SSD With 324 Clients

25

Cold SSD Cache I/O

Min

MB/s

Warm SSD Cache I/O

ZFS R/O Disk Block CacheZFS R/O Disk Block CacheZFS R/O Disk Block Cache

25% Improvement!

If Things Were So Simple!

ZFS Disk Block Cache is workflow sensitive
Test represents a specific workflow

Multiple job reruns (happens but …)

But we could not successfully test the obvious
Long term caching of conditions-type (i.e., hot) data

Not enough time and no proper job profile

Whole file caching is much less sensitive
At worst can pre-cache for a static workflow

However, even this can expose other problems
CERN Symposium 12-Oct-09 26

Same Job Stream: Disk vs SSD

27

Disk I/O SSD I/O

Min

MB/s

OpenSolaris CPU Bottleneck OpenSolaris CPU Bottleneck

Xroot R/O Disk File CacheXroot R/O Disk File CacheXroot R/O Disk File Cache

28

Xrootd R/O Disk File Cache
Well tuned disk can equal SSD Performance?

Yes, when number of well-behaved clients < small n
324 Fermi/GLAST clients probably not enough and
Hitting an OS bottleneck

OpenSolaris vectors all interrupts through a single CPU

Likely we could have done much better
System software issues proved to be a roadblock

This may be an near-term issue with SSD-type devices

Increasing load on high performance H/W
appears to reveal other software problems ….

What We Saw

High SSD load can trigger FS lethargy
ZFS + 8K blocks + high load = Sluggishness

Sun is aware of this problem

Testing SSD to scale is extremely difficult
True until underlying kernel issues resolved

This is probably the case irrespective of the OS
We suspect that current FS’s are attuned to high latency
So that I/O algorithms perform poorly with SSD’s

CERN Symposium 12-Oct-09 29

The Bottom Line

Decided against ZFS L2ARC approach (for now)

Too narrow
Need Solaris 10 Update 8 (likely late 4Q09)

Linux support requires ZFS adoption
Licensing issues stand in the way

Requires substantial tuning
Current algorithms optimized for small SSD’s
Assumes large hot/cold differential

• Not the HEP analysis data access profile

30

The xrootd SSD Option

Currently architecting appropriate solution
Fast track → use the staging infrastructure

Whole files are cached
Hierarchy: SSD, Disk, Real MSS, Virtual MSS

Slow track → cache parts of files (i.e., most requested)

Can provide parallel mixed mode (SSD/Disk) access
Basic code already present

But needs to be expanded

First iteration will be fast track approach

31

32

Future Developments

Smart SSD file caching
Implement frm_purge

Needed for new-style XA partitions and SSD’s
Selectable client-side caching algorithms
Adapting Scalla for mySQL clusters

To be used for LSST and perhaps SciDB
Visit the web site for more information

http://xrootd.slac.stanford.edu/

33

Acknowledgements

Software Contributors
Alice: Derek Feichtinger
CERN: Fabrizio Furano , Andreas Peters
Fermi/GLAST: Tony Johnson (Java)

Root: Gerri Ganis, Beterand Bellenet, Fons Rademakers
SLAC: Tofigh Azemoon, Jacek Becla, Andrew Hanushevsky,

Wilko Kroeger
LBNL: Alex Sim, Junmin Gu, Vijaya Natarajan (BeStManBeStMan team)

Operational Collaborators
BNL, CERN, FZK, IN2P3, RAL, SLAC, UVIC, UTA

Partial Funding
US Department of Energy

Contract DE-AC02-76SF00515 with Stanford University

