

LHC and the Muon Puzzle in Extensive Air Showers

Hans Dembinski

FSP Meeting, Siegen, 5. Oct 2017

Michael Schmelling, MPIK LHCb group HD, Tatsiana Klimkovich, Dmitry Popov, Mikhael Zavertyaev,

Cosmic rays

Air showers in arrays

Haungs et al., JoP Conf. Ser. 632 (2015) 012011

Energy from size of $e\gamma$ component Mass from size of muonic component (other mass proxies also in use, e.g. X_{max})

Hans Dembinski | MPIK

HD et al. (IceCube collab.), PoS(ICRC2015)576 http://icecube.wisc.edu/viewer/icetop

Muon Puzzle

Muon deficit in simulated air showers for cosmic rays above 10⁸ GeV

Why fix muons?

To resolve large uncertainties in cosmic-ray composition above the knee

Many mass composition measurements above the knee based on µ-component: IceTop/IceCube, KASCADE-Grande, Haverah Park, AGASA...

Two recent leading experiments differ above the knee, likely because of model

- IceTop/IceCube: μ-component interpreted with SIBYLL 2.1 (old)
- KASCADE-Grande: μ-component interpreted with EPOS-LHC (new)

Why fix muons?

To get better predictions of atm. neutrino background for neutrino observatories

Haungs et al., JoP Conf. Ser. 632 (2015) 012011

Fedynitch et al., PoS(ICRC2017)1019

Muon production and **neutrino** production in air showers **coupled** Wrong number of muons = wrong prediction of atm. neutrino background

Relevant particles

CRMC simulation, model spread: EPOS-LHC, QGSJet-II-04, SIBYLL-2.3

CRMC: R. Ulrich et al. https://web.ikp.kit.edu/rulrich/crmc.html

Kaons do not contribute significantly to observable muons, but transport energy Hans Dembinski | MPIK 7

Data on pion spectra

Hans Dembinski | MPIK

LHCb

Favored LHC detector for this work: forward geometry with excellent particle ID

Forward spectrometer fully instrumented in $2 < \eta < 5$

- Very good momentum and vertex resolution
 - $\delta p/p < 1 \%$ for $0 GeV/c, <math>\delta x \sim 20 \mu m$ for high p_T tracks
- Good particle identification
 - K: ~90 % efficiency, mis-ID < 5 %
 - μ : ~97 % efficiency, mis-ID ~ 1-3 %
- **Optimal**: μ , **p**, **K**⁺⁻, π ⁺⁻ produced inside Vertex Locator
- **Ok**: K⁰_S, Λ⁰, γ, e, π⁰
- **Challenging**: stable neutral hadrons n, K⁰_L

LHCb collab., JINST 3 (2008) S08005 LHCb collab., IJMP A 30 (2015) 1530022

LHCb-SMOG: Gas target

LHCb collab., JINST 9 (2014) P12005

Hans Dembinski | MPIK

Science Objectives

- Solve Muon Puzzle
 - Investigate hadron production to understand amplitude and shape of μ-LDF
 - Study forward and lateral hadron production at LHC
- Forward production: study pp $\sqrt{s} = 13$ TeV
 - Study forward-physics near first interaction in air shower
 - Cover forward range relevant for energy transfer and μ-LDF amplitude
 - Relevant for energy transfer: pions (charged and neutral), kaons, nucleons
 - **Measure:** gamma/pi-charged ratio; spectra of pions, kaons, protons, neutrons
- Lateral production: study p(6.5 TeV) on gas (He, Ne) with LHCb-SMOG
 - o pO in between pHe and pNe, test Glauber model predictions
 - LHCb covered mid-rapidity range relevant for **µ-LDF shape**
 - Relevant for muon production: pions, protons
 - Measure: spectra of pions, protons
- Push for dedicated pO collisions in Run 3 (2020-2022)
 - Objectives and measurements as in pp + test Glauber model predictions
 - pO \sqrt{s} = 9.2 TeV; measure and interpolate pp \sqrt{s} = 8, 13 TeV to compare

pO collisions at LHC

- Initial study by D. Mangluki in 2012
 - CERN can provide light nucleon beams
 - Collisions can be pA, AA, and AB
- ECR source can "deliver anything", but takes time to commission the whole chain (LEIR/PS/SPS)
- O is already support gas for Pb
- Required luminosity can be acquired in a short time
- Strong support from the cosmic ray community

A. de Roeck, highlight talk, ICRC 2017

Muon Puzzle

µ-LDF (Lateral Density Function) **steeper** than in simulations

Ateaga-Velazquez et al. (KASCADE-Grande collab.), PoS(ICRC2017)316

Discrepancy in µ-LDF larger at higher energies and near shower axis

Muon Puzzle: Summary

- Muon deficit in simulated air showers above 10⁸ GeV
- Muon deficit shows up in old and recent models (although less in recent models)
- µ-LDF steeper than in simulations (KASCADE-Grande)
- Muon deficit due to wrong μ-LDF? It depends...

r = lateral distance to shower axis

Muon Puzzle

Muon deficit in simulated air showers for cosmic rays above 10⁸ GeV

HiRes-MIA collab. PRL 84, no. 19 (2000) 4276

Kokoulin et al. Nucl. Phys. B Proc. Suppl. 196 (2009) 106

- Effect seen by several experiments at small and large zenith angles
- Effect seen in old and latest models, but latest models caught up

Extended Muon Puzzle

Ateaga-Velazquez et al. (KASCADE-Grande collab.), PoS(ICRC2017)316

Letessier-Selvon et al. (Pierre Auger collab.), Brazilian J. of Physics 44 (2014) 560–570

μ-attenuation rate **higher**, all models equally too low Muon production depth **higher** than expected for EPOS-LHC, which is otherwise closest to data

Matthews-Heitler model

- Only pions produced: $N_{ch} + N_0$
- Charged pions re-interact until they reach critical energy
- No. of muons = No. of charged pions at critical energy

$$E_{\pi} \stackrel{!}{=} \xi_c^{\pi} \to n_c = \frac{\ln[E_0/\xi_c^{\pi}]}{\ln[N_{ch} + N_0]}$$

 n_c cascade steps until decay to muons, typical value 4 to 5

$$N_{\mu} = N_{ch}^{n_c} = \left(\frac{E_0}{\xi_c^{\pi}}\right) \underbrace{\frac{\ln[N_{ch}]}{\sum_{\beta}}}_{\beta}$$

Mass sensitivity $N_{\mu}(A) = A^{1-\beta} \times N_{\mu}(p) \rightarrow N_{\mu}(\text{Fe}) \approx 1.4 N_{\mu}(p)$

- No. of muons: whole shower history relevant
- **µ-LDF:** near (far) part dominated by high (low) energy muons $\alpha_{\mu} \propto 1/E_{\mu}$

Hans Dembinski | MPIK

N //

Full air shower simulations

Ulrich et al., PRD 83 (2011) 054026

- MC study using modified hadronic interaction models
- Hadron production properties adjusted with energy-dependent factor f_{19}
- Matthews-Heitler model confirmed, muon number...
 - **very sensitive** to pion charge ratio N₀/(N_{ch} +N₀)
 - **sensitive** to particle multiplicity
- Extreme changes required to increase muon number by observed 20 %

Relevant particles I

Who are the **grandmothers** of observable muons? $hadron + air \rightarrow meson + X$ air shower arrays are insensitive to extreme-forward muons $\rightarrow \mu + \nu_{\mu} + \nu_{e}$

Maris et al. (NA61 collab.) Proc. ICRC 2009, 1059

Related work

Hans Dembinski | MPIK

p+He_(fixed): anti-proton spectra

LHCb-CONF-2017-002

Prompt production at $\sqrt{s_{NN}} = 110 \text{ GeV}$

EPOS-LHC: data/MC ~ 1.5

Plans to also...

- measure p-bar from strange decays
- analyze data from 4 TeV p beam

Charged particle multiplicity and density at 7TeV

LHCb collab., EPJC 74 (2014) 2888

Soft-QCD group

- Inelastic pp cross-section at $\sqrt{s} = 5$, 13 TeV
- Charge ratios in pA, Ap, pp
- Production of $(anti-)\Lambda$
- Charged particle multiplicities and densities at $\sqrt{s} = 7$ TeV
- V0 cross-sections at $\sqrt{s} = 2.76$, 7 TeV
- Forward energy flow
- Ridge study in pp collisions at $\sqrt{s} = 13$ TeV