LHCb Hadron Spectroscopy in Germany

Sebastian Neubert

Uni Heidelberg

Hadron physics publications

Title	Citations
Observation of $J/\psi p J/\psi p$ resonances consistent with pentaguark states in $\Lambda 0b \rightarrow J/\psi K - p \Lambda b 0 \rightarrow J/\psi K - p$ decays	455
Measurement of the ratio of branching fractions $B(B^{}0 \rightarrow D^* + \tau - v^{}\tau)/B(B^{}0 \rightarrow D^* + \mu - v^{}\mu)$	283
Observation of the rare Bs0→µ+µ− decay from the combined analysis of CMS and LHCb data	323
Test of lepton universality using $B+\rightarrow K+\ell+\ell-B+\rightarrow K+\ell+\ell-$ decays	442
Determination of the X(3872) meson quantum numbers	266
Prompt charm production in pp collisions at $s\sqrt{s} = 7 \text{ TeV}$	206
First Evidence for the Decay $B0s \rightarrow \mu + \mu - \mu$	441
Strong constraints on the rare decays Bs0 \rightarrow μ + μ - and B0 \rightarrow μ + μ -	266
Evidence for CP violation in time-integrated $D0 \rightarrow h-h+D0 \rightarrow h-h+$ decay rates	328
Measurement of J/ ψ production in pp collisions at $s\sqrt{s} = 7$ TeV	349
Measurement of σ (pp \rightarrow bb $^-$ X) at $s\sqrt{s}=7$ TeV in the forward region	313
Observation of the resonant character of the Z(4430) – state	245

Strong German Hadron Spectroscopy Community

Experimental:

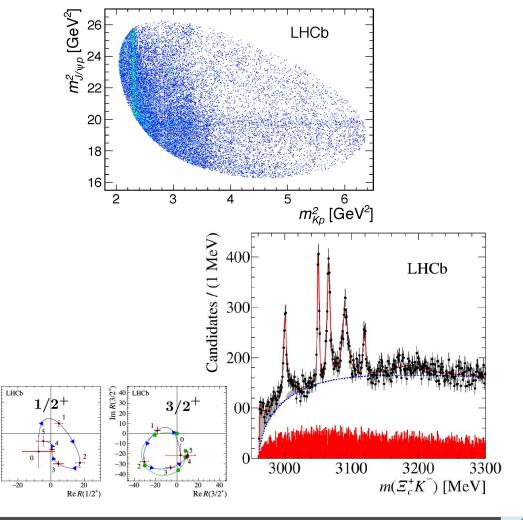
- COMPASS
- BES III
- PANDA
- MAMI
- CB-ELSA
- BELLE II
- LHCb

Focus on medium energy experiments

A lot of light-hadron phenomenology

Light and hidden-charm exotics

Theory Groups:


- Bonn
- Juelich
- GSI
- Giessen
- Siegen
- TUM
- ...

Hot Topics set by LHCb

- Pentaquark phenomenology
- Heavy baryon spectroscopy
 - o Omega_c
 - O Xi_cc
- Hidden charm exotic mesons
 - O X(3872)
 - O Z(4430)+
 - O X(4140) and friends in J/psi Phi
 - More analyses in the pipeline
- Amplitude analysis techniques
 - Checking resonant character with model-independent parameterisations

Sebastian Neubert 4

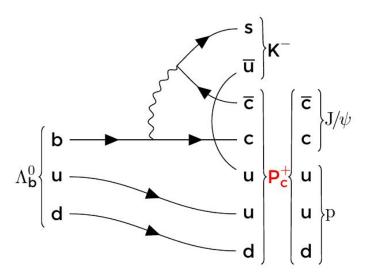
What Role does LHCb see for itself in Spectroscopy?

- Still a niche topic in LHCb Germany
 - O S.N.: Pentaquarks
 - Exotic mesons? E.g. Spin exotics
- LHCb currently has world-best data sets
 - More ideas than people to work on it
 - Try to attract more German collaborators?

- LHCb as a driver of analysis techniques
 - Requires close collaboration with phenomenology
 - Coupled channel analyses
 - Using constraints from other experiments (especially on light quark systems)
 - Open data / reinterpretation interfaces?

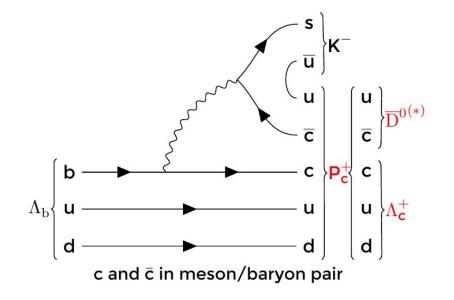
How can expertise in spectroscopy be better interfaced with flavour physics?

- Parametrisations of Dalitz-Plots
- Proposal by Brasilian Colleagues:
 - Use CPV observables as tool to learn about hadronic resonances
 - Charmless B-decays
- What about form factors?
 - What measurements are needed?
 - Where do we need to reach out to dedicated experiments?


5 **Y**H

Decay of the P_c to Open Charm

In preparation


P_c discovery in $\Lambda_b \to J/\psi p K^-$

Molecular-Models:

 $P_c^+ \to \Lambda_c^+ \overline{D}^{0(*)}$ favoured decay mode

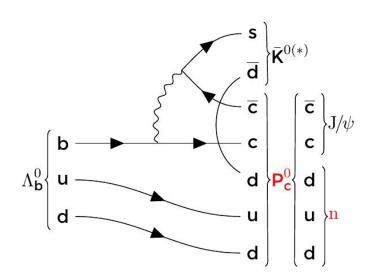
[PRC85(2012)044002][\(\to \arXiv: 1703.01045]

Combined Analysis $\Lambda_{ m b} o\Lambda_{ m c}^+\overline{ m D}^0{ m K}$ and $\Lambda_{ m b} o\Lambda_{ m c}^+\overline{ m D}^{0*}{ m K}^+$

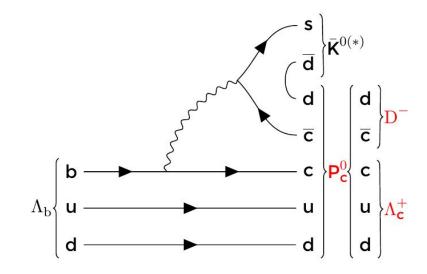
■ Predictions on relative widths
→ arXiv:1703.01045

	Widths (MeV)					
Mode	P_c (4	1380)	$P_c(4450)$			
	$\bar{D}\Sigma_c^*(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{5}{2}^+)$		
$\bar{D}^*\Lambda_c$	131.3	41.6	80.5	22.6		
$J/\psi p$	3.8	8.4	8.3	2.0		
$\bar{D}\Lambda_c$ 1.2		17.0	41.4	18.8		

lacktriangle Possible spin-parity combinations for the $\Lambda_c^+\overline{D}^{0(*)}$ system

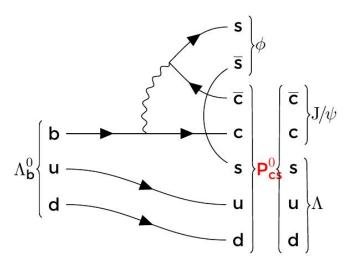

ℓ	$\Lambda_{\rm c}^+ \overline{\rm D}^0$	$\Lambda_{ m c}^+\overline{ m D}^*$	pJ/ψ
S	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}$
Ρ	$\frac{1}{2}^+, \frac{3}{2}^+$	$\frac{1}{2}+,\frac{3}{2}+,\frac{5}{2}+$	$(\frac{1}{2}+,\frac{3}{2}+,\frac{5}{2}+$
D	$\frac{3}{2}^-, \frac{5}{2}^-$	$\frac{1}{2}^-, \frac{3}{2}^-, \frac{5}{2}^-, \frac{7}{2}^-$	$\frac{1}{2}^-, \frac{3}{2}^-, \frac{5}{2}^-, \frac{7}{2}^-$
	favoure	d quantum numbers	hiahliahted

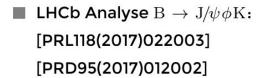
■ Complementary information on quantum numbers

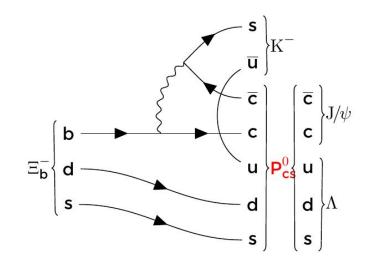

A neutral Pentaquark?

Are there isospin partners to the P_c^+ ? uudc $\bar{c} \leftrightarrow uddc\bar{c}$

Neutron not detectable in LHCb


Decay into open charm hadrons accessible




Pentaquarks with Strangeness?

Both final states provide access to strange pentaguarks usdcc

- Less tracks reconstruct
- Lower Ξ_b production cross section
- Expect comparable statistics

Towards Many flavor Baryons

Table XIII: Comparison of predictions for $M(\Xi_{bc})$.

Reference	Value (MeV)	Method	
Present work	6914 ± 13		
[25]	6916 ± 139	QCD-motivated quark model	
[28]	6938	QCD-motivated quark model	
[44]	6930	Potential models	
[46]	6990 ± 90	Feynman-Hellmann + semi-empirical fo	rmula
[47]	7029	Mass sum rules	L
[48]	6950	Relativistic quasipotential quark mo	del
[49]	6915	Three-body Faddeev equations.	
[52]	6820 ± 50	Potential approach and QCD sum r	
[53]	6960	Nonperturbative string	В
[54]	6933	Relativistic quark-diquark	Ξ_{cc}^{+}
[55]	6800	Bag model	Ξ_{c}^{+}
[58]	6919	Variational	Ξ_{i}^{+}
[59]	7011	Quark model	Ξ_0^0
[60]	6789	Coupled channel formalism	=0
[61]	6840 ± 10	Instantaneous approx. + Bethe-Salp	Ξ_{ba}^{+} Ξ_{ba}^{+} Ξ_{ba}^{0} Ξ_{ba}^{-}
[62]	6750 ± 50	QCD sum rules	b

	$\sigma(pp \to \Xi_{bc} + X)$	~	$\sigma(pp \to \Xi_b + X) \cdot \frac{\sigma(pp \to \Xi_c + X)}{\sigma(pp \to \Xi + X)}$
14		~	$\sigma(pp \to \Xi_c + X) \cdot \frac{\sigma(pp \to \Xi_b + X)}{\sigma(pp \to \Xi + X)}$

Lifetimes

Baryon	This work	[28]	[52]	[71]	[72]
$\Xi_{cc}^{++} = ccu$	185	430 ± 100	460 ± 50	500	~ 200
$\Xi_{cc}^+ = ccd$	53	120 ± 100	160 ± 50	150	~ 100
$\Xi_{bc}^+ = bcu$	244	330 ± 80	300 ± 30	200	_
$\Xi_{bc}^0 = bcd$	93	280 ± 70	270 ± 30	150	_
$\Xi_{bb}^0 = bbu$	370	_	790 ± 20	1507	-
$\Xi_{bb}^{-} = bbd$	370	1-1	800 ± 20	-	- 0

		e ⁻ , , , , , , , , , , , , , , , , , , ,	e-	7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{c} \pi^{\mp} \\ Y(4260) \\ \hline \\ z^{\pm} \end{array}$	p p incl.	pp incl.
$J/\psi \pi^+\pi^-$	X(3872)	Y(4260) Y(4008)				X(3872)	X(3872)
$\psi(2S)\pi^+\pi^-$		Y(4360) Y(4660)					
$\Lambda_{c}\overline{\Lambda}_{c}$		Y(4630)				2	
$\psi\gamma$	X(3872)						
$\begin{array}{c} \chi_{c1}(1P)\gamma \\ \chi_{c1}(1P)\omega \end{array}$	X(3832)			Y(4220)			
21	X(3872)			1(4220)		1.	
$\mathrm{J}/\psi\omega$	Y(3940)			X(3915)			
$\mathrm{J}/\psi\phi$	X(4140) X(4274) X(4500) X(4700)			X(4350)			
$\mathrm{J}/\psi\pi$	Z(4430) Z(4200) Z(4240)				Z(3900)		
$\psi(2S)\pi$	Z(4430)					8	52
$\chi_{\rm c1}(1{\rm P})\pi$	Z(4051) Z(4248)						
$h_c(1P)\pi$	0				Z(4020)		
DD				Z(3930)			
$\overline{\mathrm{D}}^*$	X(3872)		X(3940)		Z(3885)		
$\overline{D}^*\overline{D}^*$			X(4160)		Z(4025)	50	
$\mathrm{J}/\psi\mathrm{p}$	P _c (4380) P _c (4430)						

Exploiting different sources -- beyond the Upgrade

There are no spectroscopy studies with

- Bs
- Bc

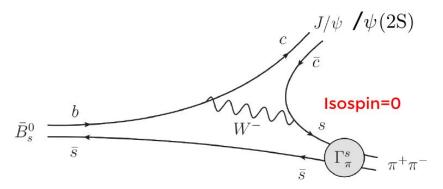
as sources yet!

Study different production mechanisms

Heavy baryons are a unique sample, not available at Belle II!

It is not enough to find ground-state exotic states.

Excitation spectrum tells us about internal structure (exotic Regge trajectories)



Sebastian Neubert

Bs and Y(4260) as sources of exotic mesons?

Z(4430) in B
$$^0_{\,(\mathrm{s})}
ightarrow \psi(\mathrm{2S})\pi\pi$$

(see also \hookrightarrow arXiv:1508:06841)

- B⁰ decay Caibbo suppressed
- \blacksquare B_s⁰ on equal footing
- Compare exotic contributions in both channels!

Y(4260) in B-decays?

- \blacksquare Limit from BaBar: $B(B \rightarrow$ $Y(4260)K \rightarrow J/\psi \pi \pi K$ $< 2.9 \times 10^{-5}$ [PRD73(2006)011101]
- QCD sum rules: $3.0 \times 10^{-8} < 1.8 \times 10^{-6}$ \hookrightarrow arXiv:1502.00119
- Could be produced in $B_{\rm s}^0 \to {\bf Y}(4260)\phi$
- Isolate strangeness in well defined state (ϕ)
- 3-body final state instead of 4-body in B⁺ decay