DARK PHOTON AT LHCB

Yotam Soreq

FSP meeting in Siegen, October 5, 2017

the Standard Model (SM) works great but it is not a complete picture

the Standard Model (SM) works great but it is not a complete picture

New Physics (NP) is required but its scale is unknown

Multipole moment, t

Multipole moment, t

BASICS OF DARK PHOTON

dark sector with broken gauge theory
kinetic mixing with photon
$\frac{\epsilon}{2} F_{\mu \nu}^{\prime} F^{\mu \nu}$

Holdom, 86'

BASICS OF DARK PHOTON

dark sector with broken gauge theory
kinetic mixing with photon
$\frac{\epsilon}{2} F_{\mu \nu}^{\prime} F^{\mu \nu}$

Holdom, 86'

$$
\mathcal{L}_{\gamma A^{\prime}} \supset-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu}+\frac{1}{2} m_{A^{\prime}}^{2} A^{\prime \mu} A_{\mu}^{\prime}+\epsilon e A_{\mu}^{\prime} J_{\mathrm{EM}}^{\mu}
$$

dark photon, A^{\prime}, couples to the EM current

CURRENT BOUNDS ON A'

WHY LHCB?

WHY LHCB?

- real time data analysis (trigger-less) for Run 3
- particle identification
- muons detection:
- dimuon invariant mass $\left(m_{\mu \mu}\right)$ resolution:

$$
\begin{aligned}
& \text { - } 4 \mathrm{MeV}, m_{\mu \mu}<1 \mathrm{GeV} \\
& \text { - } 0.4 \% m_{\mu \mu}, m_{\mu \mu}>1 \mathrm{GeV}
\end{aligned}
$$

- time resolution: $\sigma_{\tau} \sim 50 \mathrm{fs}$ (almost constant in proper lifetime)

WHY LHCB?

- $A^{\prime} \rightarrow \mu^{+} \mu^{-}-$
- inclusive search (do not need to specify the production)
- fully data driven
- both prompt and displaced searches
- Run 3 - integrated luminosity of $15 \mathrm{fb}^{-1}$

inclusive dark photon at LHCb

P. Ilten, YS, J. Thaler, M. Williams, W. Xue, 1603.08926

WHY LHCB?

VELO

(vertex locator)

interaction point

transverse

WHY LHCB?

transverse

WHY LHCB?

VELO
 (vertex locator)

interaction point

$22 \mathrm{~mm}-$
transverse

WHY LHCB?

VELO
 (vertex locator)

interaction point

SEARCH REGIONS

SIGNAL ESTIMATION

S - signal:

$$
p p \rightarrow X A^{\prime} \rightarrow X \mu^{+} \mu^{-}
$$

includes mixing with

 vector mesons

Bjorken, Essig, Schuster,

SIGNAL ESTIMATION

S - signal:
$p p \rightarrow X A^{\prime} \rightarrow X \mu^{+} \mu^{-}$
includes mixing with vector mesons

BEM - background from EM processes:
meson decays
final state radiation
Drell Yan

$$
p p \rightarrow X \gamma^{*} \rightarrow X \mu^{+} \mu^{-}
$$

Bjorken, Essig, Schuster,

SIGNAL ESTIMATION

differential relation:

$$
\frac{\mathrm{d} \sigma_{p p \rightarrow X A^{\prime} \rightarrow X \mu^{+} \mu^{-}}}{\mathrm{d} \sigma_{p p \rightarrow X \gamma^{*} \rightarrow X \mu^{+} \mu^{-}}}=\epsilon^{4} \frac{m_{\mu \mu}^{4}}{\left(m_{\mu \mu}^{2}-m_{A^{\prime}}^{2}\right)^{2}+\Gamma_{A^{\prime}}^{2} m_{A^{\prime}}^{2}}
$$

SIGNAL ESTIMATION

differential relation:

$$
\frac{\mathrm{d} \sigma_{p p \rightarrow X A^{\prime} \rightarrow X \mu^{+} \mu^{-}}}{\mathrm{d} \sigma_{p p \rightarrow X \gamma^{*} \rightarrow X \mu^{+} \mu^{-}}}=\epsilon^{4} \frac{m_{\mu \mu}^{4}}{\left(m_{\mu \mu}^{2}-m_{A^{\prime}}^{2}\right)^{2}+\Gamma_{A^{\prime}}^{2} m_{A^{\prime}}^{2}}
$$

per mass bin:

Bjorken, Essig, Schuster,

PROMPT BACKGROUNDS

- misidentified pions:
- $B^{\pi \pi}$ - two pions are misidentified
- $B^{\pi \mu}$ - one pion is misidentified and one real muon
- $B_{B H}$ - Bethe-Heitler background, subdominant due to small photon luminosity function

PROMPT BACKGROUNDS

- misidentified pions:
- $B \pi \pi$ - two pions are misidentified
- $B^{\pi \mu}$ - one pion is misidentified and one real muon
- B_{BH} - Bethe-Heitler background, subdominant due to small photon luminosity function

$$
\begin{gathered}
B_{\text {prompt }}=\underbrace{B_{M}+B_{\mathrm{FSR}}+B_{\mathrm{DY}}}_{B_{\mathrm{EM}}}+\underbrace{B_{\text {sodis }}^{\pi \pi}+B_{\text {misID }}^{\pi \mu}}_{\begin{array}{c}
B_{\text {misID }} \\
\text { "bood" }
\end{array}} \\
\text { does not }
\end{gathered}
$$

PROMPT BACKGROUNDS

selections:

- $2<\eta\left(\mu^{ \pm}\right)<5$
- $p\left(\mu^{ \pm}\right)>10 \mathrm{GeV}$
- $p_{T}\left(\mu^{ \pm}\right)>0.5 \mathrm{GeV}$
- $p_{T}\left(A^{\prime}\right)>1.0 \mathrm{GeV}$
- μ isolation:
if DY is significant,
$m_{A^{\prime}}>m_{\phi} \sim 1 \mathrm{GeV}$

PROMPT BACKGROUNDS

selections:

- $2<\eta\left(\mu^{ \pm}\right)<5$
- $p\left(\mu^{ \pm}\right)>10 \mathrm{GeV}$
- $p_{T}\left(\mu^{ \pm}\right)>0.5 \mathrm{GeV}$
- $p_{T}\left(A^{\prime}\right)>1.0 \mathrm{GeV}$
- μ isolation: if DY is significant, $m_{A^{\prime}}>m_{\phi} \sim 1 \mathrm{GeV}$

DISPLACED BACKGROUNDS

- pre-module:
- main backgrounds: $b \rightarrow c \mu^{ \pm} X, c \rightarrow \mu^{ \pm} Y$
- 10000 background events per mass bin
- post-module:
- mostly material interactions, rescaled from $K_{S} \rightarrow \mu^{+} \mu^{-}$ search
- 25 background events pre mass bin
- backgrounds from misidentifications are subdominants

REACH PLOT

REACH PLOT

REACH PLOT

REACH PLOT

2016 DATA

$p_{\mathrm{T}}\left(\mu^{ \pm}\right)>1.0 \mathrm{GeV}$ (and not 0.5 GeV) - because of $\mu \mathrm{ID}$

2016 DATA

$p_{\mathrm{T}}\left(\mu^{ \pm}\right)>1.0 \mathrm{GeV}$ (and not 0.5 GeV) - because of $\mu \mathrm{ID}$

POSSIBLEIMPROVEMENTS

- event selection: multivariate analysis, low p_{T}
- semi-inclusive search: $M \rightarrow \ell^{+} \ell^{-} Y,\left(D^{* 0}\right.$ example)
- di-electron search: $m_{A} \in\left[2 m_{e}, 2 m_{\mu}\right]$, mass resolution is degraded by Bremsstrahlung
- luminosity: Run 4 and 5, (50fb-1 ${ }^{-1}$ and $500 \mathrm{fb}^{-1}$)

$D^{* 0} \rightarrow D^{0} A^{\prime} S \in A R C H$

- $D^{* 0} \rightarrow D^{0} A^{\prime} \rightarrow D^{0} e^{+} e^{-}$
- $m_{A^{\prime}} \in\left[2 m_{e}, 142 \mathrm{MeV}\right]$

- prompt and displaced searches
- improved mass resolution by kinematical fit to very narrow D^{*} - (improve the Bremsstrahlung)

Ilten, Thaler, Williams, Xue, 1509.0675

$D^{* 0} \rightarrow D^{0} A^{\prime} S \in A R C H$

Ilten, Thaler, Williams, Xue, 1509.0675

POSSIBLE IMPROVEMENTS

SUMMARY

SUMMARY

- we proposed an inclusive search strategy for dark photon at the LHCb experiment in the di-muon channel
- due to the kinetic mixing, the signal can be directly inferred from the $\gamma^{*} \rightarrow \mu^{+} \mu^{-}$rate, enabling a data-driven search
- we show that both prompt and displaced searches are sensitive to interesting regions in the $\mathrm{m}_{\mathrm{A}^{\prime}-\varepsilon^{2}}$ plane, which is difficult to probe in other experiments

BACKUP SLIDES

PROMPT BACKGROUNDS

subtracting fake pions by using the same-sign sample:

$$
\begin{aligned}
& n_{ \pm \pm}^{\pi \pi}=\frac{n_{ \pm}^{\pi}\left(n_{ \pm}^{\pi}-1\right)}{2} \\
& n_{+-}^{\pi \pi}=n_{+}^{\pi} n_{-}^{\pi}
\end{aligned}
$$

number of same(opposite)
sign events per bin

PROMPT BACKGROUNDS

subtracting fake pions by using the same-sign sample:

$$
\begin{aligned}
& n_{ \pm \pm}^{\pi \pi}=\frac{n_{ \pm}^{\pi}\left(n_{ \pm}^{\pi}-1\right)}{2} \\
& n_{+-}^{\pi \pi}=n_{+}^{\pi} n_{-}^{\pi}
\end{aligned}
$$

$$
n_{+-}^{\pi \pi} \approx 2 \sqrt{n_{++}^{\pi \pi} n_{--}^{\pi \pi}} \approx n_{++}^{\pi \pi}+n_{--}^{\pi \pi}
$$

number of same(opposite)
sign events per bin

PROMPT BACKGROUNDS

subtracting fake pions by using the same-sign sample:

$$
\begin{aligned}
& n_{ \pm \pm}^{\pi \pi}=\frac{n_{ \pm}^{\pi}\left(n_{ \pm}^{\pi}-1\right)}{2} \\
& n_{+-}^{\pi \pi}=n_{+}^{\pi} n_{-}^{\pi}
\end{aligned}
$$

$$
n_{+-}^{\pi \pi} \approx 2 \sqrt{n_{++}^{\pi \pi} n_{--}^{\pi \pi}} \approx n_{++}^{\pi \pi}+n_{--}^{\pi \pi}
$$

number of same(opposite)
sign events per bin
generalize to all bins and for one fake:

$$
\begin{aligned}
& N_{+-}^{\pi \pi} \approx N_{++}^{\pi \pi}+N_{--}^{\pi \pi} \\
& N_{+-}^{\pi \mu} \approx N_{++}^{\pi \mu}+N_{--}^{\pi \mu}
\end{aligned}
$$

$$
B_{\mathrm{misID}}^{\pi \pi}+B_{\mathrm{misID}}^{\pi \mu} \approx N_{++}+N_{--}
$$

