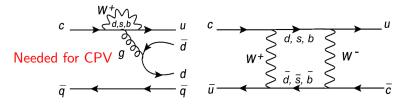
Charm Physics at LHCb FSP Meeting - Siegen, Germany

Andrea Contu

INFN

5-6 October 2017

Outline

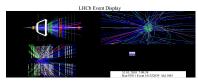


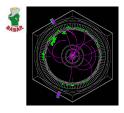
- 2 Mixing and CPV
- 3 Rare decays
- Production and Decay Properties

5 Conclusions

Why study charm physics?

- Up-type quark: unique probe of NP in the flavour sector, complementary to studies in K and B systems
- Precision CKM physics in the B sectors needs input from charm
- Rare processes are very suppressed in the SM

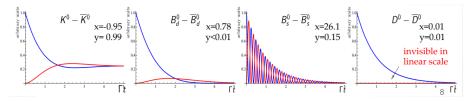

- New Physics may be hidden in the loops
- Long-distance contributions are non-negligible and precise theoretical predictions are difficult
- Charm is more of a "discovery tool"


Charm samples

LHCb		BELLE	ABAN B	€SⅢ				
Туре	Exp	\sqrt{s}	L _{int}	$\sigma(\mathbf{c}\mathbf{\bar{c}})$	$N(c\overline{c})$			
	prompt <i>cc</i>							
Hadron colliders	LHCb	7, 8 TeV 13 TeV	3/fb 2/fb +	1.4 mb 2.6 mb	$3.6 imes 10^{12} \ 4.4 imes 10^{12}$			
	CDF	2 TeV	10/fb	0.1 mb	$2.3 imes10^{11}$			
	$c\bar{c}$ from continuum							
e^+e^- collider	Belle BaBar	10.6 GeV 10.6 GeV	1/ab 550/fb	1.3 nb 1.3 nb	$\begin{array}{c} 1.3\times10^9\\ 0.7\times10^9\end{array}$			
		Charm fa	arm factories at $Dar{D}$ threshold					
	BESIII Cleo-c	3.7 GeV 3.7 GeV	3/fb 0.8/fb	3 nb 3 nb	$\begin{array}{c} 20\times10^6 \\ 5\times10^6 \end{array}$			

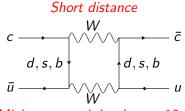
Pros & Cons

- LHCb
 - Large combinatorial backgrounds
 - Decays with neutrals and missing particles are difficult
 - Excellent lifetime resolution due to the boost, $\sim 0.1 \tau_D$
 - Huge *cc* production cross sections
- Belle/BaBar
 - Lower boost, poorer lifetime resolution
 - Clean environment
 - Excellent performance when dealing with neutrals/neutrinos
- BES/CLEO-c
 - No boost, no lifetime measurement
 - Practically no background
 - $\psi(3770) \rightarrow DD$, quantum coherence (can measure strong phases!)



Neutral D mesons mixing

Produced as flavour D^0 and \bar{D}^0 eigenstates, decay as mass eigenstates D_1 and D_2

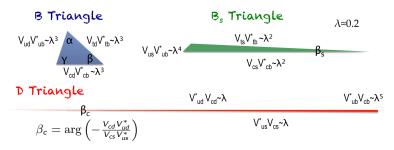

$$\begin{split} i\frac{\partial}{\partial t} \left(\begin{array}{c} D^{0}(t)\\ \bar{D}^{0}(t)\end{array}\right) &= \left(\mathsf{M} - \frac{i}{2}\mathsf{\Gamma}\right) \left(\begin{array}{c} D^{0}(t)\\ \bar{D}^{0}(t)\end{array}\right) & \quad |D_{1}\rangle = p \left|D^{0}\rangle + q \left|\bar{D}^{0}\rangle\right) \\ |D_{2}\rangle &= p \left|D^{0}\rangle - q \left|\bar{D}^{0}\rangle\right) \\ \left(\frac{q}{p}\right)^{2} &= \frac{M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}}{M_{12} - \frac{i}{2}\Gamma_{12}} & \quad |q|^{2} + |p|^{2} = 1 \end{split}$$

Mixing occurs if $\Delta M = M_1 - M_2 \neq 0$ or $\Delta \Gamma = \Gamma_1 - \Gamma_2 \neq 0$ $x = \frac{\Delta M}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma}$ $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

Tiny mixing in Charm!

Contributions to x and y

Mixing at quark level: $x \sim 10^{-5}$



Mixing via final-state interaction: $x, y \sim 0.1\%$

New physics can only affect x (SUSY, leptoquarks, etc...) Short distance in "easy" to calculate, but long distance is not \rightarrow hard to identify NP

Neutral D mesons CPV

CPV in the SM arises from a complex phase in the CKM matrix which describes the quark mixing (2008 Nobel Prize to Kobayashi and Maskawa) CKM unitarity imposes constraint on CKM elements, visualised as triangles

- The shape of the "D triangle" (not to scale) implies almost total decoupling from third generation \rightarrow CPV incredibly small
- Ideal place to look for NP!

Classification of CPV

DIRECT CPV Different decay amplitudes for D and \overline{D}

 $egin{aligned} & A_f = \langle f | H | D
angle \ & ightarrow ightar$

- Observable: difference in decay rate between particles and antiparticles
- Only CPV type possible for charged charmed hadrons

CPV IN MIXING Different mixing rates $D^0 \rightarrow \overline{D}^0$ and $\overline{D}^0 \rightarrow D^0$

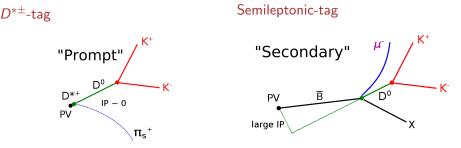
 $\left|\frac{q}{p}\right| \neq 1$

 Accessible using flavour specific decays CPV IN INTERFERENCE between mixing and decay

$$\phi = \arg\left(rac{qar{A}_f}{pA_f}
ight)$$

• Observable: difference in rates as a function of the decay time

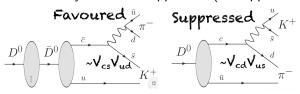
INDIRECT CPV (Universal, does not depend on final state)

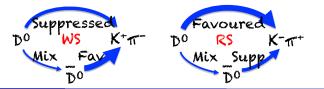

- Precision on indirect CPV (q/p and φ) depends on the knowledge of the mixing rate
- Need to measure x and y more and more precisely

Andrea Contu (INFN)

Charm Physics at LHCb

How to get the D flavour at production?

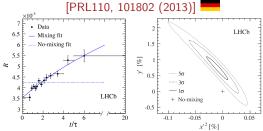

- Whether the decaying D meson is produced as D^0 or \overline{D}^0 needs to be determined to perform mixing and CPV measurements
- There are two possible tagging methods


• Both samples used by LHCb, independent and complementary in lifetime coverage

D^0 mixing

- The no-mixing scenario is now excluded thanks to the study of WS/RS $D^0 \to K\pi$ decays
- Right-Sign $D^0 \to K^-\pi^+$ is Cabibbo Favoured, Wrong-Sign $D^0 \to K^+\pi^-$ is Doubly Cabibbo Suppressed (the opposite for \overline{D}^0)

• The same final state can be reached directly or via a previous oscillation of the D flavour

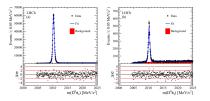

D^0 mixing with WS/RS ratio

• The WS/RS ratio as a function of the D lifetime is therefore

$$R(t) = \frac{N_{WS}(t)}{N_{RS}} {t \choose t_{R_D}} \simeq R_D + \sqrt{R_D} \frac{y'}{\tau_D} + \frac{x'^2 + y'^2}{4} \frac{t}{\tau_D}$$

(x' and y' are the usual x and y rotated by a "strong phase", $\delta_{K\pi})$

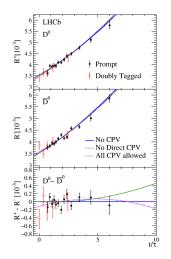
• LHCb was the first single experiment to exclude the no-mixing hypothesis at more than 5σ


• R_D , x' and y' can be determined separately for D^0 and \overline{D}^0 . Any difference would be a sign of CPV test \rightarrow not seen so far

Andrea Contu (INFN)

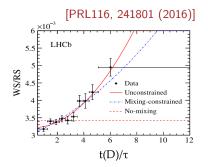
Charm Physics at LHCb

WS/RS mixing and CPV with doubly tagged decays


- New WS/RS measurement using D from $\bar{B} \to D^{*+} \mu^- X$ decays
- D⁰ flavour is tagged both with the muon and the slow pion
- Lower stats but very high purity and additional coverage at low lifetimes

- Combining prompt+secondary: $x'^2 = (3.6 \pm 4.3) \times 10^{-5},$ $y' = (5.2 \pm 0.8) \times 10^{-3}$
- No evidence for CPV

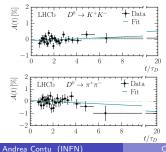
Charm Physics at LHCb


[PRD 95, 052004]

WS/RS mixing with $D^0 \rightarrow K^{\pm} \pi^{\mp} \pi^+ \pi^-$

• Similar approach as $D^0 \rightarrow K\pi$ but for rates integrated over the full phase space one has to introduce an averaged strong phase, $\delta_{K3\pi}$, and a coherence factor which accounts for dilution in sensitivity

$$R(t) = \frac{N_{WS}(t)}{N_{RS}}(t) \simeq R_D^{K3\pi} + \sqrt{R_D^{K3\pi}} R_{coh} y'' \frac{t}{\tau_D} + \frac{x''^2 + y''^2}{4} \frac{t}{\tau_D}$$


$$R_{coh}y'' = (0.3 \pm 1.8) \times 10^{-3}$$

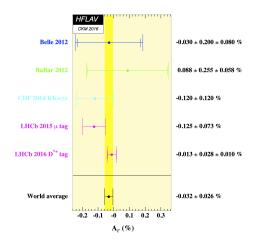
 $(x''^2 + y''^2)/4 = (4.8 \pm 1.8) \times 10^{-5}$

Indirect CPV through A_{Γ}

• Asymmetry in the effective lifetime between $D^0 \to h^+ h^-$ and $\bar{D}^0 \to h^+ h^ (h^\pm = \pi^\pm, K^\pm)$

$$A_{\Gamma} = \frac{\tau_{\bar{D}^0}^{\text{eff}} - \tau_{D^0}^{\text{eff}}}{\tau_{\bar{D}^0}^{\text{eff}} + \tau_{D^0}^{\text{eff}}} \approx \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi$$

- Almost clean measurement of indirect CPV
- Most precise result from LHCb, Run1 data
- Fit the time evolution of the yields asymmetry, $A_{CP}(t)pprox A_0 A_{\Gamma}rac{t}{ au}$



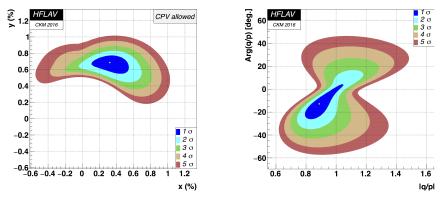
[PRL 118, 261803 (2017)]

$$A_{\Gamma}(KK) = (-0.3 \pm 0.32 \pm 0.10) \times 10^{-3}$$

 $A_{\Gamma}(\pi\pi) = (0.46 \pm 0.58 \pm 0.12) \times 10^{-3}$

A_{Γ} status

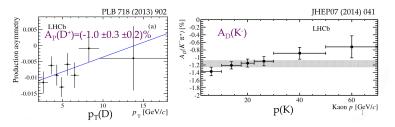
- Indirect CPV in SM is $\sim 10^{-4}$
- Approaching SM predictions and still statistically dominated!


Mixing and CPV in multibody decays: $D^0 \rightarrow K_S \pi^+ \pi^-$

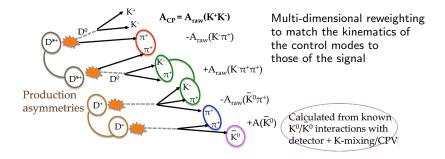
- Large statistics and rich dynamics, often referred to as "Golden Channel"
- Gives direct access to x, y, q/p and ϕ via a study of the time evolution of the Dalitz plane
- Most precise results from Belle with 1.2M signal events [PRD89 091103 (2014)]

 $\begin{aligned} & x = (0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09})\%, \ y = (0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06})\%, \\ & |q/p| = (0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}), \ \phi = (-6 \pm 11 \pm 3^{+3}_{-4})^{\circ} \end{aligned}$

- One measurement of x and y from LHCb using 2011 data only [JHEP04(2016)033], not competitive with Belle
- LHCb has 2M evts in full Run1 datasets and large trigger efficiency gain in Run2, analyses ongoing, stay tuned...


Mixing and Indirect CPV: Global fits

- No-mixing excluded at $> 11\sigma$ but x still not significant
- No evidence for indirect CPV \rightarrow need LHCb upgrade


Direct CPV

- Accessible to charged charm hadron
- Depends on decay mode, typically $A_{CP} < 10^{-3} 10^{-4}$ for Singly Cabibbo Suppressed decays
- Arises from Tree-Penguin diagram interference
- Measurements are time independent
- Experimentally has to be disentangled from other asymmetries:
 - Production asymmetries: $\sigma(pp \rightarrow DX) \neq \sigma(pp \rightarrow \bar{D}X))$
 - Charge and momentum dependent detection asymmetries due to interactions with the detector material

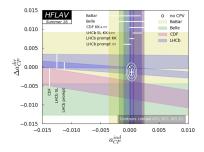
Direct CPV

- The experimental observable is obvious: $A_{raw} = (N(D) - N(\bar{D}))/(N(D) + N(\bar{D}))$
- Correct raw asymmetry with control channels using small or negligible expected CPV (essentially CF decays) to determine A_{CP}
- Example for $A_{CP}(D^0 o K^+K^-)$ using D^* tagged events

ΔA_{CP} with $D^0 ightarrow h^+ h^-$ decays

• Measure
$$\Delta A_{CP} = A_{CP}(D^0 o K^+K^-) - A_{CP}(D^0 o \pi^+\pi^-)$$

• Clean measurement, many systematics cancel at first order

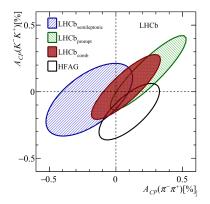

$$\Delta A_{CP} pprox \left[A_{CP}^{dir}(KK) - A_{CP}^{dir}(\pi\pi)
ight] + rac{\Delta \langle t
angle}{ au_D} A_{CP}^{ind}$$

- $\Delta A_{CP} < 0.6\%$ in the SM
- Most precise determination from LHCb [PRL 116, 191601 (2016)]

$$\Delta A_{CP} = (0.10 \pm 0.08 \pm 0.03)\%$$

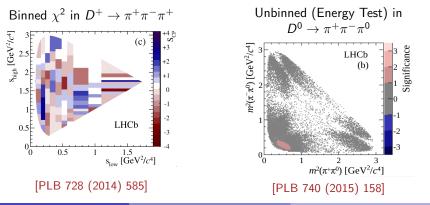
Statistically limited!

No evidence of CPV yet

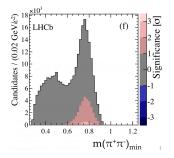

\mathcal{A}_{CP} with $D^0 ightarrow h^+ h^-$ decays

- A_{CP} in $D^0 \to K^+ K^-$ decays measured at LHCb both with semileptonic and prompt tag
- A_{CP} in $D^0
 ightarrow \pi^+\pi^-$ obtained using ΔA_{CP} measurement
- Leading in precision [PLB 767 (2017) 177-187]

$$A_{CP}(KK) = (0.04 \pm 0.12 \pm 0.10)\%$$


$$A_{CP}(KK) = (0.07 \pm 0.14 \pm 0.11)\%$$

Statistical and systematic error comparable, but some systematics can potentially be reduced in the future


Direct CPV in multibody decays

- Strong phases vary across phase space
 - \rightarrow look for local CPV in regions of the Dalitz plane
- Two possible approaches:
 - Model dependent: amplitude analysis to search for A_{CP} in resonances
 - Model independent: test compatibility of data with noCPV

CPV in $D^0 \to \pi^+ \pi^- \pi^+ \pi^-$ [PLB 769 345-356]

- Define test statistic *T*, which depends on the distance between pair of events in the Dalitz plane
- Compare with T distribution for the noCPV case (obtained by randomising the *D* flavour) and get a p-value
- Distinguish between P-even and P-odd CPV using triple product asymmetries

- P-even: p-value of 5%
- P-odd: p-value of 0.6%, 2.7σ significance for CPV
- Region of asymmetry seems to correspond to the $\rho^{0} \rightarrow \pi^{+}\pi^{-}$
- Still no evidence but something to keep an eye on

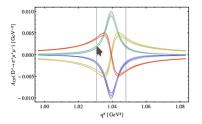
Summary on Mixing and CPV

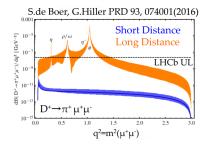
- D⁰ mixing well established, precision on x and y should still be improved
- No evidence for direct or indirect CPV but approaching SM predictions
- Excellent prospects with multibody decays!
- Most measurements are statistically limited (sometimes thanks to cleverly constructed observables), no showstoppers for RunIII
- To keep in mind: often negligible CPV is assumed in control modes, this may become problematic in the long term

Charm Rare Decays

Wide variety of physics, ranging from forbidden to not-so-rare decays

$D^0 ightarrow \mu^+ e^-$	$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	$D^0 \rightarrow \pi^- \pi^+ V (\rightarrow ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D_{(\epsilon)}^{(3)} \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	$D_s^+ \to \pi^+ \phi(\to ll)$
(-)	$D^0 \rightarrow K^{*0} l^+ l^-$	$D^0 \rightarrow \phi \ V(\rightarrow ll)$	$D_s \rightarrow \pi \ \varphi(\rightarrow \pi)$

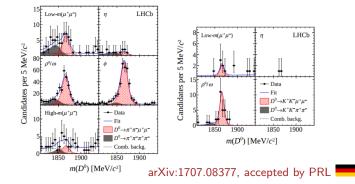

LFV, LNV,	BNV			FC	NC				VMD	1	Radia	itive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³			10 ⁻¹⁰						
$D^+_{(s)} \rightarrow h^- l^+ l^+$ $D^0 \rightarrow X^0 \mu^+ e^-$ $D^0 \rightarrow X^{} l^+ l^+$			D^0	$\rightarrow ee^{D^0}$		$D^{0} \to \pi$ $D^{0} \to \rho$ $D^{0} \to K$ $D^{0} \to \phi$	• I+I- +K-I+I-	$D^{\circ} \rightarrow$	K V(→	∙ll) D	$^{\circ} \rightarrow K^{-}\pi$	r⁺V(→ll
											[DD	D 66 (3


[PRD 66 (2002) 014009]

Short distance contributions to effective $c \rightarrow u$ transitions are tiny, branching fractions dominated by long distance contributions SM predictions for the short distance part are normally $BF < 10^{-9}$, not yet there

Multibody decays with a dilepton pair

 Decays such as D[±]_(s) → h[±]l⁺l⁻, D⁰ → h⁺h⁻l⁺l⁻ have an overwhelming contribution from long-distance processes, through intermediate vector resonances in the dimuon spectrum

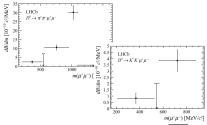


- Unlikely that NP could show up in the branching fraction
- But the richer dynamics allows to investigate *A_{CP}*, *A_{FB}* which can be up to a few percents in some NP scenarios

Observation of D^0 mesons decaying into $h^+h^-\mu^+\mu^-$

• Using 2/fb LHCb made the first observation of $D^0 \to \pi^+\pi^-\mu^+\mu^-$, $D^0 \to K^+K^-\mu^+\mu^-$

• No attempt is made to distinguish between long and short distance contribution (although long distance should dominate)


Andrea Contu (INFN)

Rare decays

Observation of D^0 mesons decaying into $h^+h^-\mu^+\mu^-$

• Measure differential and total BF (normalised to $\mathcal{B}(D^0 \to K^- \pi^+ [\mu^+ \mu^-]_{\rho^0/\omega})$ [PLB 757 (2016) 558-567])

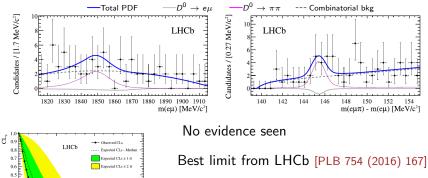
$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$						
$m(\mu^+\mu^-)$ region	$[MeV/c^2]$	B [10 ⁻⁸]				
Low mass	< 525	$7.8 \pm 1.9 \pm 0.5 \pm 0.8$				
η	525 - 565	< 2.4(2.8)				
ρ^0/ω	565 - 950	$40.6 \pm 3.3 \pm 2.1 \pm 4.1$				
ϕ	950 - 1100	$45.4 \pm 2.9 \pm 2.5 \pm 4.5$				
High mass	> 1100	< 2.8(3.3)				
1	$D^0 \rightarrow K^+ K^-$	$^{-}\mu^{+}\mu^{-}$				
$m(\mu^+\mu^-)$ region	$[MeV/c^2]$	B [10 ⁻⁸]				
Low mass	< 525	$2.6 \pm 1.2 \pm 0.2 \pm 0.3$				
η	525 - 565	< 0.7(0.8)				
ρ^0/ω	> 565	$12.0 \pm 2.3 \pm 0.7 \pm 1.2$				

Total branching fractions:

arXiv:1707.08377, accepted by PRL

$$\begin{split} \mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-) &= (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7} \\ \mathcal{B}(D^0 \to K^- K^+ \mu^+ \mu^-) &= (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7} \end{split}$$

Rarest charm decays! Compatible with SM predictions [JHEP 04(2013)135]


• Statistics is enough to perform first asymmetry measurements!

Andrea Contu (INFN)

Charm Physics at LHCb

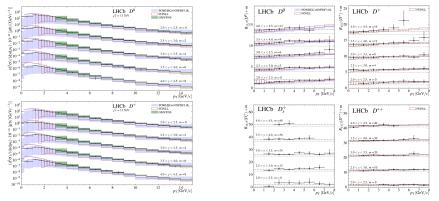
Lepton flavour violation: search for $D^0 ightarrow e^+ \mu^-$ decay

 LFV is effectively forbidden in the SM but predicted to occur in some NP scenarios

 $BF(D^0
ightarrow e\mu) < 1.3(1.6) imes 10^{-8}$ at 90(95)%CL

0.4

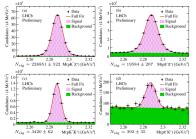
0.3


 $B(D^0 \rightarrow e^{\pm} u^{\mp})$

Summary of rare decays

- Steady progress over the years, not NP yet
- Orders of magnitude better than previous experiments on fully charged final states
- Signal seen on multibody decays, now moving to asymmetries!
- ...and to electrons
- The future of rare charm decays at LHCb (Upgrade in particular) looks very bright
- Expect some results on radiative decays as well (traditionally Belle's territory)...

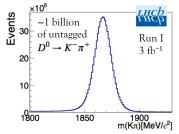
Cross-section measurements


• Probes QCD, hadronisation... ... HE neutrinos in cosmic rays.

• Have a look at [JHEP05(2017)074] for more results

What about charm baryons?

• World best measurements on $\Lambda_c \rightarrow phh'$ BF ratios [LHCb-PAPER-2017-026, in prep.] following those by Belle and BESIII



$$\begin{split} & \underline{\mathcal{B}}(\Lambda_c^+ \to pK^-K^+) \\ & \overline{\mathcal{B}}(\Lambda_c^+ \to pK^-\pi^+) \\ \end{split} = (0.165 \pm 0.015(\text{stat}) \pm 0.005(\text{syst})) \% \end{split}$$

- Direct CPV and rare processes can be searched for in baryon decays
- LHCb may be the only player in the foreseeable future
- First CPV and rare decay searches already being performed at LHCb, stay tuned

The role of Charm at LHCb

• Besides being interesting per-se, charm physics is a training ground for *B* physics: *the charm yields of today are the beauty yields of tomorrow*

- Many challenges we will face in the B case have been already encountered or will be encountered soon in charm physics
- In particular, the understanding of detector asymmetries is essentially driven by charm physics
- Charm physics at LHCb is already in the upgrade era wrt to B-physics (Turbo stream)
- Charm is a powerful tool to drive our strategy for the future...

Andrea Contu (INFN)

Charm Physics at LHCb

Conclusions

- LHCb is currently the main player in Charm physics
- No competition on final states with only charged tracks in the foreseeable future
- Search for CPV is reaching incredible precisions, approaching SM predictions. Still no evidence but intriguing hints in multibody decays
- Systematic limit still far ahead, we can probe at least one order of magnitude more precision just increasing the statistics
- Increasing importance of rare decays, improved limits but (finally) some sizeable signals in dilepton modes → new window of opportunity
- Stay tuned for results on charm baryons

Charm physics needs the LHCb Upgrade (and viceversa)