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Saturation signal #1;

forward rapidity suppression
of the nuclear modification
factor in p+A vs p+p



Single inclusive hadron production

forward rapidities probe small values of x

kr.y  transverse momentum k, rapidity y > 0

values of x probed in the process:

r1 = M 6y/\/§ xo = M e_y/\/g

Mg = (kr/2)" + mj,
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Nuclear modification factor

R, 4 = 1 in the absence of nuclear effects, i.e. if the gluons dN “=h
in the nucleus interact incoherently as in A protons R 1 d*kdy
“ N o dN""™
the suppressed production (R , < 1) was predicted in the d’ kdy

Color Glass Condensate picture, along with the rapidity dependence



Nuclear modification factor

R 4 = 1 in the absence of nuclear effects, i.e. if the gluons dN A=
in the nucleus interact incoherently as in A protons 1 d’kdy
R —
“ Ncoll dep_)hX
2
the suppressed production (R , < 1) was predicted in the d”kdy
Color Glass Condensate picture, along with the rapidity dependence
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Importance of nuclear geometry

« the impact parameter dependence of the gluon density and of Qg

in the case of a proton, using an impact-parameter averaged saturation
scale is enough most of the time, but in the case of a nucleus it is not

PROTON NUCLEUS

homogenous nucleus leads to R,, strongly dependent on the
» — - chosen nuclear saturation scale value,
p; dependence too flat
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in the case of a proton, using an impact-parameter averaged saturation
scale is enough most of the time, but in the case of a nucleus it is not

PROTON NUCLEUS

homogenous nucleus leads to R,, strongly dependent on the
» — - chosen nuclear saturation scale value,
p; dependence too flat

mean field approach p, dependence of R, better, but still a large

. > uncertainty due to modeling of the B profile
b, proper modeling of the nuclear geometry and of its
Monte-Carlo fluctuations > . :
. _) ™ N fluctuations done in the rcBK and IP-Glasma MCs
» »
.‘ ® - Schenke, Tribedy and Venugopalan (2012)

. Albacete, Dumitru, Fujii and Nara (2013)
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good description but not
much non-linear effects

the LHC
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« predictions for forward rapidities
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strong non-linear effects
but huge uncertainty above 6 GeV



Forward D mesons

 now we have forward-rapidity hadron data to compare to:
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first forward R,, measured at the LHC

1 (omitting quarkonia who are also sensitive

to other suppression mechanisms)

first saturation hint in LHC R
study to be made for FCC
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saturation effects here

collinear factorization calculations

are also consistent with the data,

but suffer from huge uncertainties
in the 1-6 GeV range
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saturation effects here

collinear factorization calculations
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first forward R,, measured at the LHC
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to other suppression mechanisms)

first saturation hint in LHC R
study to be made for FCC
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Best way to confirm R,
suppression ?

* isolated photons at forward rapidities
- no isospin effects in p+Pb vs p+p (contrary to d+Au vs p+p at RHIC)

- smallest possible x reach: no mass, no fragmentation

- no cold matter final-state effects (E-loss, ...)
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large EPS09 / CGC difference
In forward rapidity predictions

not sure nuclear geometry was
properly included to make that curve
(but | believe it is in the FCC study)



Now we have (almost) NLO

« p+Pb @ the FCC:

FCC Ryp, (12 = 10,100, K,, = 0.6)
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this is preliminary, but what if saturation effects
impact RPA only below 3 GeV, even at the FCC ?



Saturation signal #2;

forward rapidity suppression
of di-hadron azimuthal
correlations in p+A vs p+p



Di-hadron final-state kinematics

N Y2 N —)2
final state 1 Ky, Y, ky, v, X = ke +ke X, = ke +ky e
Vs

’ Vs

scanning the wave functions:

] x,~x,<1
central rapidities probe moderate x
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Di-hadron final-state kinematics

N Y2 - -
final state : Kk, ¥, K&y, ¥, L kel+ke ke +k, e

p \/g Xy = \/E

scanning the wave functions:

] x,~x,<1
. e central rapidities probe moderate x
\ X, Increases | x, ~ unchanged
. ] . xp ~ 1, )CA < 1
o — et forward/central doesn’t probe much smaller x

X, ~ unchanged | x, decreases

forward rapidities probe small x



Di-hadron angular correlations

comparisons between d+Au — h, h, X (or p+Au — h, h, X')and p+p — h, h, X
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Di-hadron angular correlations

comparisons between d+Au — h, h, X (or p+Au — h, h, X')and p+p — h, h, X
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however, when y, ~ y,~ 0 (and therefore x, ~ 0.03),
the p+p and d+Au curves are almost identical



LHCDb forward di-hadrons

 LHCb measured the di-hadron correlation function at forward rapidities

the delta phi distribution shows:
- a ridge contribution (could be flow, Glasma graphs or something else)
- the remainder of the away-side peak can be qualitatively described in the CGC
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- need p+p baseline to be conclusive
- study to be made for FCC

Giacalone and CM, in progress
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_ _ with increasing centrality seen in the data
Giacalone and CM, in progress
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What about forward di-jets?

due to saturation effects, nuclear modifications of the
transverse momentum imbalance are expected

the idea is to look at ky ~ Qs, non-linear effects at small-x will
be important, even though individually the jet p,'s are large

no sign of such effects at mid-rapidity at the LHC
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one needs to look at
forward di-jets to see
a modification
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R, of forward-forward di-jets

with a free parameter to vary the nuclear saturation scale

gA =d Al/gQEp

van Hameren, Kotko, Kutak, CM, Petreska and Sapeta (2016)
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non-linear effects become sizeable near A¢ = 1T, as expected




Forward di-jets at FCC

« at FCC energies, the suppression in p+Pb vs p+p is much bigger

near A =11 near A = 11/2
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near Ag = 11, we expect small NLO corrections (as in collinear factorization)
but a resummation of Sudakov logarithms may be crucial (work in progress)



Di-jets in UPC y+A collisions

« similar predictions have been made for di-jets in photon-nucleus

collisions at the LHC
Kotko et al (2017)
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Conclusions

RHIC saturation signals starting to get confirmed at the LHC:

- suppression of forward D mesons in p+Pb vs p+p seen by LHCb
- suppression of back-to-back correlations of di-hadrons also seen

The best way to confirm the R, suppression is forward photons
(smallest x reach, no cold matter e-loss effects)

But, if NLO calculations confirm that saturation effects impact R,
only below 3 GeV, then this won’t provide the best saturation
signal, even at FCC

Forward low-p, di-hadrons are good, but the ridge (whatever the
origin) mingles with the saturation signal, and it's magnitude at
FCC energies is not known (to be studied)

Back-to-back di-jets is the next thing to try (also at the LHC)




