

Study of delamination between inner layer trace and inner impregnation layer after quench training of MQXFS coils EDMS n° 1842073

May-Aug 2017

Sarah Gayot TE-MSC-MDT

Supervisor: Sandra Tavares

Acknowledgments:

Magnet Lab at B927 & Polymer Lab (TE-MSC-MDT)

in particular Ahmed Benfkih, Paolo Ferracin, Jose Ferradas, Susana Izquierdo Bermudez, Gregory Maury, and Francois-Olivier Pincot

Metallurgy and Metrology Section (EN-MME-MM)

CONTEXT OF THE STUDY

Starting point: disassembly of MQXFS1 and MQXFS3 magnets

- For visual inspection
- After quench training at cryogenic temperatures

Striking observation : partial delamination of inner layers on all 8 coils !

- Blistering and delamination of glass fibre layer at quench heater location
- Several levels of delamination depending on coils

How to address the issue ?

- Identify what type of glass fibre was used as inner impregnation layer in each coil
- Identify the exact location where delamination happens (type of interface)
- Assess influence of glass fibre properties on delamination : sizing, weaving pattern
- Design and perform peeling tests on impregnated glass fibre/QXF trace systems

Propose potential solutions, to be tested out in next CERN MQXFS coils

TIMELINE – INNER LAYER FABRICS USED AT CERN & LARP

STEP 1 - DISASSEMBLY OF MQXFS1

	Coil ref.	Inner layer fabric	Aspect of inner layer after quench training		
COILS	Coil #103 (1 st gen)	Tissu de verre S-2 493 (Tisstech, FR)		0 0	
CERN	Coil #104 (1 st gen)	Tissu de verre S-2 493 (Tisstech, FR)		0 0	
COILS	Coil #03	JPS 26781 933HTS (JPS, USA)		00	
CERN	Coil #05	JPS 26781 933HTS (JPS, USA)		00	

Less blistering with JPS fibre ?

CONSEQUENCES OF MQXFS1 DISASSEMBLY

Problem might come from Tisstech glass fibre S-2 493

• Much more blisters for CERN coils using this fibre From 1st to 2nd MQXFS coils, change of inner layer fabric at CERN

Switch to JPS 26781
 933HTS fibre at CERN

CERN coils #200 to #206 impregnated with JPS fibre

STEP 2 - DISASSEMBLY OF MQXFS3

	Coil ref.	Inner layer fabric	Aspect of inner layer after quench training
CERN COILS	Coil 105 (1 st gen)	Tissu de verre S-2 493 (Tisstech, FR)	
	Coil 106 (1 st gen)	Tissu de verre S-2 493 (Tisstech, FR)	Photos non available – much fewer bubbles than for LARP 007
	Coil 107 (1 st gen)	Tissu de verre S-2 493 (Tisstech, FR)	
LARP COILS	Coil #007	JPS 26781 933HTS (JPS, USA)	<image/>

CONSEQUENCES OF MQXFS3 DISASSEMBLY

More delamination on LARP coil, impregnated with JPS fibre ! LARP suggestion: change inner layer fabric again, in CERN <u>and</u> LARP coils CERN coils from #207 + LARP coils from #002 impregnated with Hexcel fabric

- Exact opposite situation as for MQXFS1
- Switch to Hexcel 4522 F81
- "more open" fibre weave
 → easier escape for helium bubbles during quenches ?

STEP 3 - INSPECTION OF LARP #002 BEFORE & AFTER MIRROR TEST

The resin looks blurred, which is not usual \rightarrow contamination by release agent ? \rightarrow might explain the dry zones

 \rightarrow poor quality of the photos ?

WHAT WE HAVE LEARNT FROM MAGNET DISASSEMBLY & WAY FORWARD

The influence of fibre type on delamination is unclear

- Type of sizing ?
- Weaving pattern (more or less open) ?

Need to understand better the delamination mechanism

• Nature of the interface where blistering occurs

→ Peel-off tests on impregnated "fibre + QXF trace" systems

- 1 layer of glass fibre fabric (100 μ m) + 1 layer of QXF trace (150 μ m)
- Impregnation with CTD 101K and curing at the Polymer Lab (TE-MSC-MDT)
- Peel-off tests at EN-MME-MM

PRINCIPLE OF PEELING TESTS

UTS tensile machine 1KN load, 7mm/min

TEST 1 QXF TRACE + JPS 26781 933HTS

SAMPLE TYPE	TEST	LOAD (N)	ASPECT AFTER TEST	COMMENT
Metal/ impregnated fibre	90°	0.58		NO ADHESION between metal from trace (copper or inox) and impregnated JPS fibre
Polyimide/ impregnated fibre	90°	>21.5 Polyimide broke		VERY GOOD ADHESIO between polyimide from trace and impregnated JF
Polyimide/ impregnated fibre	180°	>20.2 Polyimide broke		→ Polyimide ripped before being peeled off !

TEST 1 QXF TRACE + JPS 26781 933HTS

1st HYPOTHESIS

Delamination occurs at metal/epoxy resin interface, due to very bad adhesion of epoxy on metals

 \rightarrow Confirmed by microscope observation of delaminated sample

which leads to ...

2nd HYPOTHESIS

Glass fibre type should have little to no influence here

→ Need to confirm by doing another test with Hexcel 4522 F81 fabric

TEST 2 QXF TRACE + HEXCEL 4522 F81

SAMPLE TYPE	TEST	LOAD (N)	ASPECT AFTER TEST	COMMENT
Metal/ impregnated fibre	90°	0.79		NO ADHESION between metal from trace (copper or inox) and impregnated Hexcel fibre
Polyimide/ impregnated fibre	90°	19.34 Polyimide broke		 VERY GOOD ADHESION between polyimide from trace and impregnated Hexcel fibre → Polyimide ripped before being peeled off !

Delamination also occurs at metal/epoxy interface, due to very bad adhesion of epoxy on metals

→ Confirms 2nd HYPOTHESIS

i.e. glass fibre type probably has little to no influence on delamination

2 TYPES OF POTENTIAL SOLUTIONS

Increase epoxy/metal adhesion by treating metal

- Sanding the metal to make it rougher ightarrow already being done
- Applying an epoxy primer to the metal
 - might blend with impregnation resin and cause problems
 - no products identified on the market

Suppress epoxy/metal interface Encapsulating the trace between two polyimide sheets
 → needs to perform 3rd test

→ Simulation of encapsulated fibre: Hexcel 4522 fibre + REVERSED trace

TEST 3 <u>REVERSED</u> QXF TRACE + HEXCEL 4522 F81

SAMPLE TYPE	TEST	LOAD (N)	ASPECT AFTER TEST	COMMENT
Polyimide/ impregnated fibre	90°	15.4 Polyimide broke	similar to tests 1 and 2	
Simulation of encapsulated metal/ impregnated fibre (repeated 2 times)	90°	29.8* Polyimide broke		VERY GOOD ADHESION between polyimide- "encapsulated" metal and resin Polyimide separated from metal and then ripped before being separated from resin !

*average of 2 values

SUMMARY OF RESULTS FROM TESTS 1,2 & 3

Metal / impregnated fibre

Polyimide / impregnated fibre

Simulation of encapsulated metal / impregnated fibre

CONCLUSION

Encapsulating next MQXFS traces by adding a thin layer of polyimide on top

- To retrieve lost space, try to find new glass fibre fabric with smaller thickness
- With similar sizing as Hexcel 4522 F81

