Faltin type kicker for a High-Lumi LHC broadband transverse feedback

W. Hofle, G. Zhu

Acknowledgements: F. Caspers, G. Kotzian, K. Li, E. Montesinos, M. Wendt ..., J. Fox for USLARP

Wideband feedback SPS

- The SPS is a **bottlenecks** for delivery of high intensity beams
- Transverse instabilities, in particular TMCI and electron cloud, prevents acceleration and extraction of beam with more that ~1.4e11 ppb for the Q26 optics
- Several mitigation schemes were investigated, among them, a wideband feedback system

Successful MD results (2016): see K. Li et al.: <u>https://indico.cern.ch/event/609486/</u> J. Fox et al.: IPAC'17 TUPIK119

12 September 2017

SPS kickers for Wideband Feedback System

Complementarity of kickers

Striplines are severly limited in bandwidth (zeros in frequency response) Faltin kicker: flat response (magnetic kick only at low frequency) \rightarrow pipe cut-off usable Matching bandwidth of demonstrator system to observed and simulated instabilities

Kicker design report: J. Cesaratto et al.: CERN-ACC-Note-2013-0047

Faltin type kicker for SPS

3-8 k Ω up to 1 GHz (for 1 m)

 $R_{\perp}T^2 = \frac{V_{\perp}^2}{2P_{\rm tot}}$

Invented originally for stochastic cooling by **L. Faltin** at CERN: Nucl. Instrum. Methods 148, 449 (1978) optimised design for SPS: M. Wendt et al. : IPAC'17 TUIK053

Shunt impedance SPS

M. Wendt, IPAC'17

$$R_{\perp}T^2 = \frac{V_{\perp}^2}{2P_{\rm tot}}$$

Faltin type kicker for LHC

- included a very preliminary estimate in High-Lumi design report
- need to adapt to available aperture in LHC
- optimise length to probe potential to cover frequencies up to 3-4 GHz observed in simulations (K. Li et al.)
- single design for combined functions in horizontal and vertical kicker planes
- Simulations for design by Guangyu Zhu (IMP, Lanzhou)

Different geometries explored

100 (mm

beam coupling impedance manufacturing

Different geometries

Rectangular model

Parameter list

Parameter	Description	Direction	Lengths (mm)
al	Length of slotted section	Z	500
bh	Beam pipe height	х	52
bw	Beam pipe width	у	52
bth	Beam pipe thickness	у	2
wh	Waveguide height	Х	35
WW	Waveguide width	у	52
SS	Slot spacing	Z	6
sh	Slot length	У	25/30/35/40/44
shh	Horizontal slot length	Х	25/30/35/40/44
SW	Slot width	Z	6
elect_w	electrode width	у	29/30/32
h_elect	electrode height to slot	X	5/10/12/15
elect_th	electrode thickness	X	5
bo	Length of octagonal side	Х	44

Increased slot lengths

Electrode height

Variation of length

Beam coupling impedance

Smaller aperture ("FCC-like")

LHC High Lumi WP2 Meeting – WH

Next steps

- Pin down requirements in bandwidth
 - Possibly staged approach with different kickers covering different bandwidths (also driven by availability of broadband amplifiers)
- identify locations in layout available
 - explore smaller aperture versions pending confirmation of input from ABP for allowed aperture
- evaluate beam coupling impedance and its acceptability
- evaluate needed power to drive kickers to obtain reasonable kick