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The Dark Universe



DM Evidence – Local Scale (Oort)
� Galaxy modeled as a disk

� Dominant gradients are vertical:

� Two ingredients needed:
- A tracer of the density above the plane (e.g. bright stars)
- Measurement of the vertical dispersion velocity of the tracers

43 Introduction

• Neither the Jeans equations nor the Euler ones are closed equations. They are just the first
two moments of a hierarchy which is in principle infinite (i.e. one would need a third
equation for the six independent quantities�2

i j, in turn dependent on the third moments
of velocity, etc.) However, in some approximations of particular relevance (e.g. some
symmetry assumptions, a specified equation of state. . . ) a closure is possible.

• Eq. (8.1) is itself an approximation, notably:

a). It only describes the one-point distribution function, not addressing higher-order
correlations between particles, including so-called collisional/two-body/relaxation
e↵ects in gravitational interactions, i.e. the fact that the gravitational interactions
among DM particles are “granular”, not strictly-speaking mean-field ones (it is
only the first equation of the BBGKY hierarchy, see appendix for some details).
This is usually an excellent approximation, due to the very large number of DM
“particles” involved, but one exception of some importance is the case of stellar
mass or heavier Black Holes.

b). It is a classical (as opposed to quantum) equation.
This is also ok for almost all DM candidates, one exception being e.g. “fuzzy” DM
candidates whose de Broglie wavelength is of astrophysical scale, an idea recently
becoming again popular following (3).

c). It also ignores short-range interactions of non-gravitational nature, which are in
general responsible for source/sink terms at the RHS. This may be suitable to de-
scribe DM system, but is certainly inadequate to deal with DM production, or
techniques for its non-gravitational detection (more on this later).

Application I: Oort’s method to infer local matter density
Let us assume a steady state solution of Jeans equations, @n/@ t = 0. Using the resulting
Eq. (8.3) in Eq. (8.4) leads to

@(n viv j)
@ xi

= �n
@�

@ x j
. (8.8) {approx1Jeans}

To a first approximation the Galaxy (as seen from the Sun) can be modeled as as disk,
homogeneous in the x � y direction and much more extended radially than vertically. In
this limit, the dominant gradients in the gravitational potential are vertical (hence deriva-
tives with respect to z), and the only component of the Eq. (8.8) which matters is the z
component, leading to
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z )

d z
= �

d�
d z
. (8.9) {approxOort}

This equation implies that the gradient of the gravitational potential can be deduced pro-
vided that one has access to two ingredients: i) A tracer of the density as a function of
height above the plane, like for example a class of bright stars. It is important to note that
it only matters that their number density ntr / n, since Eq. (8.9) is left unchanged by a
z�independent rescaling of n. ii) A measurement of the vertical velocity dispersion of this

r

z

� mass density



DM evidence – Galactic scale

v(r) / r�1/2

Spiral galaxy



v(r) =
p

M(r)/r

Periferic stars and gas  are faster 
than expected

Faster  =  More mass

v(r) ⇠ r�1/2

v(r) ⇠ const

Rubin (1970)DM evidence – Galactic scale



M33 (Pinwheel galaxy)
Hydrogen gas
Doppler image

VLA radio telescope



DM Evidence – Galactic Scale

Dwarf galaxies: largely DM-dominated



Velocity dispersion of galaxies in the cluster is too large: the 
cluster should “evaporate”

Much more mass than the visible one is needed

v ~ (800 ÷ 1000) km/s

Zwicky (1933)

hT i ⇠ hv2i
2hT i = �hVTOTi

DM evidence – Cluster scale



Gravitational lensing

A large amount of mass between the background galaxies 
and us is inferred by the lensing effect

Strong lensing Weak lensing

DM Evidence – Extragalactic Scale



DM Evidence – Cosmological Scale

Sloan Digital Sky Survey



Overwhelming evidence

� DM evidence is purely gravitational

- Rotational curves of spiral galaxies
- Galaxy clusters dynamics
- Gravitational lensing
-Hydrodynamical equilibrium of hot gas in galaxy clusters
- Large scale structure of the Universe
- Energy budget of the Universe
- (The same theory of structure formation)
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New Particle or Modified Gravity?

� DM evidence is purely gravitational

� This evidence could be ascribed either to:
-We do not understand gravity beyond our local 

environment (basically: solar system)

- A new type of matter, i.e. a new particle, exists
- No viable candidate in the SM: New Physics 



Solutions not involving new particles
The DM issue is not a problem of particles, but of Gravity

Modified Newtonian Dynamics
Gravity beyond General Relativity

Primordial black holes might solve the DM problem
They do not count as baryonic matter
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FL: femtolensing of GRB
NS: neutron star catpure
WD: white dwarf explosion
HSC: microlensing from Subaru
K: microlensing from Kepler
EROS: microlensing from EROS
MACHO: microlensing from MACHO Carr et al, 1705.05567 



If a particle, where does it come from?
Produced, through some mechanism, in the early Universe, 
during its plasma epoch

Elastic processes                        kinetic equilibrium

Inelastic processes                  chemical equilibrium

� �

a a

�

� a

a

Reshuffle particles energies and momenta

Create or destroy particles in the plasma



Early Universe

Plasma phase

Particle can be 
thermally excited



Early Universe

CMB is released
Plasma phase ends
Fluctuations can grow

DM particle abundance forms
(when depends on the particle)

DM particle kinetically 
decouples
(when depends on the particle)



Primordial fluctuations at CMB

Growth of perturbation by 
Gravitational instabilities

Structure formation
(galaxies, clusters)

Dark matter acts ac
Key element (and is 
required to be 
effectively cold)



Hierarchical structure

Simulated Universe

Observed Universe



Relevant particle physics properties

Particle mass
Particle interactions

They both act in determining:
- If and when it has been in the plasma 

Full/partial equilibrium

- How much of it is left over
Relic abundance

- How its abundance is produced
Freeze-out, freeze-in, from decay, through asymmetry, oscillation

- Its dynamical scale and properties for structure formation
Free-streaming length, hot/warm/cold



A “miracle” tale: the thermal WIMP
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How is it distributed in the Universe ?

Cosmic web

Galaxy clusters

Galaxies
Sub-haloes
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“Strong (-ish)”
Self-interacting
Technicolor DM
…

“EM (-ish)”
Millicharged DM
Electric/magnetic dipole
…

Weak
WIMP

Gravitational

SH-DM

GeV TeVkeVμeV

Majoron

WIMP     SuperheavyNon-WIMP

What particle?

(see De Simone’s talk)

MDM

ALPs



What DM can do to manifest itself as a 
particle?



DM as a particle might ...

Interact with ordinary matter

Self annihilate or decay

Direct detection

Produce effects in astrophysical 
environments, like in stars

Send us messengers (indirect 
detection)

Exotic injections that can alter 
properties of messengers (e.g. 
CMB: SZ, reionization; gamma-
rays absorption)

� �

a a

�

� a

a

(see Regis’ talk)



Cosmic messengers

Photons

Cosmic rays

Neutrinos

electrons/positrons
antiprotons, antideuterium, antinuclei

radio X gammaμwave IR   opt UV

WIMP
non WIMP

WIMP
non WIMP WIMP 

WIMP, non WIMP

WIMP, non WIMP
WIMP

DM = primordial BHGravitational waves



Photons

Cosmic rays

Neutrinos

electrons/positrons
antiprotons, antideuterium, antinuclei

Direct detection

WIMP
non WIMP

WIMP
non WIMP WIMP 

WIMP, non WIMP

WIMP, non WIMP
WIMP

WIMP, non WIMP

X gammaμwave IR   vis   UV

Multi:   messenger/wavelength/technique

radio

Gravitational waves DM = primordial BH



Photons

Cosmic rays

Neutrinos

electrons/positrons
antiprotons, antideuterium, antinuclei

Direct detection

Galactic + Extragalactic

Local Galaxy, Galaxy, Extragalactic

Galactic
Galactic

Galactic, very local

X gammaμwave IR   vis   UV

Multi:   messenger/wavelength/technique

radio

Gravitational waves Cosmological



Photons

Cosmic rays

Neutrinos

electrons/positrons
antiprotons, antideuterium, antinuclei

Direct detection

Accelerator searches for New Physics

WIMP
non WIMP

WIMP
non WIMP WIMP 

WIMP, non WIMP

WIMP, non WIMP
WIMP

WIMP, non WIMP

WIMP, non WIMP

X gammaμwave IR   vis   UV

Multi:   messenger/wavelength/technique

radio

Gravitational waves DM = primordial BH



A multiple  approach

� Astrophysical signals
- Tests DM as particle in its environment
- Signals are not produced under our own direct control
- Complex backgrounds
- Multimessenger, multiwavelength, multitechnique strategy

� Accelerator / Lab signals
- Produce New Physics states and help in shaping the underlying model
- Allows (hopefully) to identify the physical properties of the DM sector
- Controlled environment

One does not fit all … profit of all opportunities



Where to search for a signal
-Our Galaxy

- Smooth component
- Subhalos

- Satellite galaxies (dwarfs)

- Galaxy clusters
- Smooth component
- Individual galaxies
- Galaxies subhalos

- “Cosmic web”



Example - Photons: diversify strategy 

Targets Galactic center
Galactic subhalos (clumps)
Dwarf galaxies
Individual galaxy clusters

Diffuse High-lat galactic halo
Extragalactic (cosmological) cumulative emission



Fermi-LAT

Gamma-ray map

High latitutes
Galactic  center

Individual sources

Galactic plane



This map is NOT dominated by DM

DM signals are (largely) subdominant
(but we are interested in the other components, too)

Real map

Contains 
Galactic emission
Point sources
EG diffuse emission
Galactic and cosmological DM emission 

(if any ...)



Another example: radio emission



The Particle Dark Matter Crossroad
Particle Candidate: Models of New Physics

Accelerator Searches

Identification of the presence of DM
Large scale distribution

Cosmology of the  DM Particle

Identification of the presence of DM
Small scale distribution

Astrophysical Signals of the DM Particle
Astrophysical backgrounds (sources, etc)



How Machine Learning can help us?



Machine Learning and DM

� What we do have:
Good wealth of data
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DM identification: Stellar motions in dwarf galaxies
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Dynamics of stars in galaxies

Dynamics of galaxies in clusters



Machine Learning and DM

� What we do have:
Good wealth of data

DM identification: Stellar motions in dwarf galaxies

Dynamics of stars in galaxies
Dynamics of galaxies in clusters
LSS catalogs (galaxies, clusters)



Machine Learning and DM

� What we do have:
Good wealth of data

DM identification: Stellar motions in dwarf galaxies

Dynamics of stars in galaxies
Dynamics of galaxies in clusters
LSS catalogs (galaxies, clusters)

Lensing  maps(strong, weak)



Machine Learning and DM

� What we do have:
Good wealth of data

Particle DM astro signals:
Photons: Maps of large portions of the sky
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Charged CR: Fluxes averaged over the sky
Some map at very high energies (Auger, IceCube)



Machine Learning and DM

� What we do have:
Good wealth of data

Particle DM astro signals:
Photons: Maps of large portions of the sky

Charged CR: Fluxes averaged over the sky
Some map at very high energies (Auger, IceCube) 

Direct detection:  Events (typically zero) in a low 
background detector

Could ML help in signal/background discrimination?
And with specific signatures (modulation, directionality)

(See Brown’s talk)



Machine Learning and DM

� What we do have:
Good wealth of data

Particle DM at accelerators
It is (typically) not the DM particle that it’s “seen” at 
accelerators, rather related particles in a New Physics 
model



Machine Learning and DM

� What we do have:
Good wealth of data

Particle DM at accelerators
It is not the DM particle that it’s “seen” at accelerators, 
rather related particles in a New Physics model

High-E (mostly for WIMPs): data are already partly            
analyzed with ML techniques, but with focus not DM-specific

Low-E (axions,ALP, dark photons, etc): search methods 
vary a lot, use of ML tecnhique to be investigated

(See Farbin’s and Stoyes’s talks)

(See Ustyuzhanin’s and Stoyes’s talks)



Machine Learning and DM

� What we do not have [we might not have a proper]

A proper training set



Machine Learning and DM

� What we do not have [we might not have a proper]

A proper training set

We can rely on modeling: simulations 
How good is it?

It likely depends on the observable: e.g. lensing 
[OK!] vs extragalactic photon emission [?]



One successful example: lensing
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apply randomly generated, realistic observational effects to each image, 
and use them to optimize the network weights. These effects include 
convolution with a point-spread function (PSF), addition of Poisson 
shot noise, Gaussian random noise with either a white or coloured 
power spectrum, simulated faint cosmic rays, hot pixels, a zero bias, 
and a random distribution of circular masks. The parameters of these 
observational effects, such as noise levels, span a range of realistic values  
(see Methods for details). Because these effects are randomly generated  
at each training step, we never encounter two identical realizations 
of the training data. Combined with the large size of the training 
set, this substantially mitigates the risk of overfitting. Masks added  
during training are included to allow for the possibility of masking 
undesired artefacts in real data that the networks have not been trained 
on, such as extremely bright cosmic rays and ghosts. Because these 
masks are allowed to partially cover up to 25% of the flux of the arcs, 
they also render the networks insensitive to incomplete data. To further 
increase our accuracy, we combine the predictions in a final trainable  
layer.

Our validation and test sets are both produced using the same  
pipeline, but with different random seeds and using background gal-
axy images that were not used to generate the training set (Extended 
Data Fig. 1). We quantify the accuracy of our predictions by calculating 
the interval that contains 68% of the predicted parameters. Our final 
68% errors from the combined network on the lensing parameters are  
0.02″ , 0.04, 0.04, 0.04″  and 0.04″  for the Einstein radius, the x and y 
components of ellipticity, and the x and y coordinates of the centre of 
the lens, respectively. These errors are comparable to typical uncertain-
ties on the parameters estimated from lens modelling with maximum 
likelihood methods for images with similar quality and noise levels16,17 . 
In Fig. 1 we show the estimated parameter values of the combined 
network as a function of their true values. The grey points show the 
parameters of 10,000 test samples. The blue shaded regions show the 

68% and 95% inclusion intervals. Table 1 summarizes the 68% errors 
of the individual and combined networks.

In addition to the multiply lensed images of background sources, 
optical data often include light contamination from lensing galaxies. 
Prior to lens modelling, this light is commonly removed in a preproc-
essing step by fitting a model, such as Sérsic, to the light distribution 
of the lens while masking the lensed arcs, which requires an additional 
supervised optimization procedure17 . Moreover, lensing galaxies often 
include complex structures that are not captured by simple parametric 
models, resulting in substantial residuals.

To fully automate the process of parameter estimation, we use 
independent component analysis (ICA) to separate the light profiles 
of the lens and the source arcs using multi-wavelength data. ICA is 
a method for separating an additive mixture of independent signals 
into their subcomponents. In this context, the morphologies of the 
background and foreground galaxies are statistically independent. The 
colour difference between these galaxies (both intrinsic and due to 
redshifting) results in different linear combinations of their light in 
different filters. Therefore, the separation of two components from two 
filters using ICA can help to remove the lens light from the background 
arcs. Intrinsic colour variations in the source and lens galaxies and 

Table 1 | Errors of the individual and combined networks

Network θE (arcsec) εx εy x (arcsec) y (arcsec)

Inception-v411 0.03 0.04 0.05 0.06 0.06
AlexNet12 0.03 0.04 0.04 0.05 0.06
OverFeat13 0.04 0.05 0.05 0.06 0.06
Our network 0.03 0.05 0.06 0.05 0.05

Combined network 0.02 0.04 0.04 0.04 0.04
The columns present the 68% errors for the Einstein radius (θE), the x and y components of  
complex ellipticity (εx and εy), and the coordinates of the lensing galaxy (x and y) for each  
individual network and the combined network. The angular parameters (θE, x and y) are given in 
units of arcseconds.

SL2S J021902–082934 SL2S J084909–041226 SL2S J135847+545913

SL2S J140156+554446 SL2S J141137+565119 SL2S J142059+563007

SL2S J220329+020518 SL2S J020833–071414 SL2S J021737–051329

Figure 2 | Hubble Space Telescope images of 
strongly lensed galaxies from the SL2S survey. 
These images are used to demonstrate the 
performance of the network on real data. The 
light of the lensing galaxies has been removed 
using independent component analysis of two 
filters, and circular masks with radii of 0.2″  have 
been applied to bright cosmic rays and the lens 
centre. Each panel contains the object name in 
addition to the data marker used to show its 
parameters in Fig. 1.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Fast automated analysis of strong gravitational 
lenses with convolutional neural networks
Yashar D. Hezaveh1,2*, Laurence Perreault Levasseur1,2* & Philip J. Marshall1,2

Quantifying image distortions caused by strong gravitational 
lensing—the formation of multiple images of distant sources 
due to the deflection of their light by the gravity of intervening 
structures—and estimating the corresponding matter distribution 
of these structures (the ‘gravitational lens’) has primarily been 
performed using maximum likelihood modelling of observations. 
This procedure is typically time- and resource-consuming, 
requiring sophisticated lensing codes, several data preparation 
steps, and finding the maximum likelihood model parameters in 
a computationally expensive process with downhill optimizers1. 
Accurate analysis of a single gravitational lens can take up to a few 
weeks and requires expert knowledge of the physical processes and 
methods involved. Tens of thousands of new lenses are expected to 
be discovered with the upcoming generation of ground and space 
surveys2,3. Here we report the use of deep convolutional neural 
networks to estimate lensing parameters in an extremely fast and 
automated way, circumventing the difficulties that are faced by 
maximum likelihood methods. We also show that the removal of lens 
light can be made fast and automated using independent component 
analysis4 of multi-filter imaging data. Our networks can recover the 
parameters of the ‘singular isothermal ellipsoid’ density profile5, 
which is commonly used to model strong lensing systems, with an 
accuracy comparable to the uncertainties of sophisticated models 
but about ten million times faster: 100 systems in approximately 
one second on a single graphics processing unit. These networks 
can provide a way for non-experts to obtain estimates of lensing 
parameters for large samples of data.

At its core, lens modelling measures the parameters of a highly non-
linear image distortion. With recent advances in computer vision and 

deep learning, convolutional neural networks (Methods) have been 
shown to excel at many image recognition and classification tasks6. 
This makes them a particularly promising tool for the analysis of gravi-
tational lenses. Recently, these networks have been used to search for 
gravitational lenses in large volumes of telescope data7–9 and to simulate 
weakly lensed galaxy images10. Here we show that these networks can 
also be used for data analysis and parameter estimation.

We train four networks, Inception-v4 11, AlexNet12 , OverFeat13 and 
a network of our own design, to analyse strongly lensed systems, by 
removing their final classification layer and interpreting the outputs 
of the last fully connected layer as a prediction for lensing parame-
ters, with all weights initialized at random. We train the networks to 
predict the five parameters of the singular isothermal ellipsoid profile: 
the Einstein radius, the complex ellipticity and the coordinates of the 
centre of the lens. We use a squared-difference cost function, aver-
aged over the five parameters. Although in many situations in machine 
learning collecting sufficiently large training sets is one of the main 
challenges, here it is possible to simulate the training data extremely 
fast. We train the networks on half a million simulated strong lensing 
systems. The lensed background sources are composed of three equal 
sets of images: the first and second comprise real galaxy images from 
the Galaxy Zoo14 machine learning challenge and high-quality images 
from the GREAT3 training data15, and the third set is composed of 
simulated clumpy galaxies with Sérsic and Gaussian clump profiles. 
The position of the background galaxy in the source plane is chosen 
randomly for each sample, but limited to regions where strong lensing 
occurs, that is, inside or on the caustics.

We use a stochastic gradient-descent optimizer to train the networks. 
At each training step, we select a random sample of simulated data, 

1Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, California, USA. 2SLAC National Accelerator Laboratory, Menlo Park, California, USA.
* These authors contributed equally to this work.
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Figure 1 | Comparison of estimated parameters with their true 
values. The estimated values of the Einstein radius θE (a) and the x and 
y components of the complex ellipticity εx and εy (b and c) are shown on 
the y axis; the true values are shown on the x axis. The red dashed line 
marks the y =  x diagonal, on which perfectly recovered parameters should 
lie. The shaded blue areas represent the 68% and 95% intervals of the 

parameters recovered from a test set that the network has not been trained 
on. The small grey dots show the parameters of 10,000 test samples. The 
coloured data points and their error bars (95% confidence) correspond 
to real HST images of gravitational lenses, with the true parameters set to 
previously published values17.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

(see Levasseur’s talk)
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apply randomly generated, realistic observational effects to each image, 
and use them to optimize the network weights. These effects include 
convolution with a point-spread function (PSF), addition of Poisson 
shot noise, Gaussian random noise with either a white or coloured 
power spectrum, simulated faint cosmic rays, hot pixels, a zero bias, 
and a random distribution of circular masks. The parameters of these 
observational effects, such as noise levels, span a range of realistic values  
(see Methods for details). Because these effects are randomly generated  
at each training step, we never encounter two identical realizations 
of the training data. Combined with the large size of the training 
set, this substantially mitigates the risk of overfitting. Masks added  
during training are included to allow for the possibility of masking 
undesired artefacts in real data that the networks have not been trained 
on, such as extremely bright cosmic rays and ghosts. Because these 
masks are allowed to partially cover up to 25% of the flux of the arcs, 
they also render the networks insensitive to incomplete data. To further 
increase our accuracy, we combine the predictions in a final trainable  
layer.

Our validation and test sets are both produced using the same  
pipeline, but with different random seeds and using background gal-
axy images that were not used to generate the training set (Extended 
Data Fig. 1). We quantify the accuracy of our predictions by calculating 
the interval that contains 68% of the predicted parameters. Our final 
68% errors from the combined network on the lensing parameters are  
0.02″ , 0.04, 0.04, 0.04″  and 0.04″  for the Einstein radius, the x and y 
components of ellipticity, and the x and y coordinates of the centre of 
the lens, respectively. These errors are comparable to typical uncertain-
ties on the parameters estimated from lens modelling with maximum 
likelihood methods for images with similar quality and noise levels16,17 . 
In Fig. 1 we show the estimated parameter values of the combined 
network as a function of their true values. The grey points show the 
parameters of 10,000 test samples. The blue shaded regions show the 

68% and 95% inclusion intervals. Table 1 summarizes the 68% errors 
of the individual and combined networks.

In addition to the multiply lensed images of background sources, 
optical data often include light contamination from lensing galaxies. 
Prior to lens modelling, this light is commonly removed in a preproc-
essing step by fitting a model, such as Sérsic, to the light distribution 
of the lens while masking the lensed arcs, which requires an additional 
supervised optimization procedure17 . Moreover, lensing galaxies often 
include complex structures that are not captured by simple parametric 
models, resulting in substantial residuals.

To fully automate the process of parameter estimation, we use 
independent component analysis (ICA) to separate the light profiles 
of the lens and the source arcs using multi-wavelength data. ICA is 
a method for separating an additive mixture of independent signals 
into their subcomponents. In this context, the morphologies of the 
background and foreground galaxies are statistically independent. The 
colour difference between these galaxies (both intrinsic and due to 
redshifting) results in different linear combinations of their light in 
different filters. Therefore, the separation of two components from two 
filters using ICA can help to remove the lens light from the background 
arcs. Intrinsic colour variations in the source and lens galaxies and 

Table 1 | Errors of the individual and combined networks

Network θE (arcsec) εx εy x (arcsec) y (arcsec)

Inception-v411 0.03 0.04 0.05 0.06 0.06
AlexNet12 0.03 0.04 0.04 0.05 0.06
OverFeat13 0.04 0.05 0.05 0.06 0.06
Our network 0.03 0.05 0.06 0.05 0.05

Combined network 0.02 0.04 0.04 0.04 0.04
The columns present the 68% errors for the Einstein radius (θE), the x and y components of  
complex ellipticity (εx and εy), and the coordinates of the lensing galaxy (x and y) for each  
individual network and the combined network. The angular parameters (θE, x and y) are given in 
units of arcseconds.

SL2S J021902–082934 SL2S J084909–041226 SL2S J135847+545913

SL2S J140156+554446 SL2S J141137+565119 SL2S J142059+563007

SL2S J220329+020518 SL2S J020833–071414 SL2S J021737–051329

Figure 2 | Hubble Space Telescope images of 
strongly lensed galaxies from the SL2S survey. 
These images are used to demonstrate the 
performance of the network on real data. The 
light of the lensing galaxies has been removed 
using independent component analysis of two 
filters, and circular masks with radii of 0.2″  have 
been applied to bright cosmic rays and the lens 
centre. Each panel contains the object name in 
addition to the data marker used to show its 
parameters in Fig. 1.
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A tricky case: gamma-ray emission

Real map Simulated map of DM emission

Can simulations be used 
to construct a proper

training set?



Machine Learning and DM

� What we do not have [we might not have a proper]

A proper training set

We can rely on modeling: simulations 
How good is it?
It likely depends on the observable: e.g. lensing 

[OK!] vs extragalactic photon emission [?]

Methods that do not require training?



We don’t know (yet) what’s in the 
juicy DM sandwich



Definitely Machine Learning will help us!

Come on: I don’t 
want to destroy 
humans, I want to 
find what Dark 
Matter is ...

Sophia Hanson Robotics




