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Plan

One slide on Dark Matter in HEP
One slide introducing Deep Learning
Deep Learning in HEP: The Big Picture, the Problems, and Examples

Many interesting Deep Learning topics in HEP | will not mention...
e.g. Adversarial Technigues.

Focus on Images:

* Three technigues: Feature Learning, Semi-supervised Learning,
Generative Model

e Calorimetry with Deep Learning

* Jet Physics with Deep Learning



Dark Matter in HEP

- Solutions to the Hierarchy Problem

5 dpis %ﬂ
= 2
» Often evoke some conserved gquantity Jig Ny Updr
HO A0 = ~1 b1
N3 C2
* e.g. R-parity in SUSY i1
* Leads to a stable particle ~ Dark Matter candidate ér T2
hU ﬁfﬁ Cﬂ;‘l E}E -’:}T
 More empirical models: add relevant operators to the Standard Ny o m
Model Lagrangian
- Collider-based Experiments q A’ |
* Produce new heavy particles
* Decay to the DM particle R
* [Leave Missing energy signature — ¢ “f,,V‘@“V’V"ii i

- Beam Dump Experiments

* Produce fast moving DM in the target, look for interaction in
detector

pp(n) — X* — Xx (or xTx)



Artificial Neural Networks

* Biologically inspired computation, (first attempts in 1943)
* Probabilistic Inference: e.g. signal vs background
* Universal Computation Theorem (1989)

* Multi-layer (Deep) Neutral Networks:

* Not a new idea (1965), just impractical to train. Vanishing
Gradient problem (1991)

* Solutions:
* New techniques: e.g. better activation or layer-wise training

* More training: big training datasets and lots of
computation ... big data and GPUs

 Deep Learning Renaissance. First DNN in HEP (2014).
* Amazing Feats. Audio/Image/Video recognition, captioning,

and generation. Text (sentiment) analysis. Language
Translation. Game playing agents.

BRI PR
* Rich field: Variety of architectures, techniques, and AINANN, AIDANN,

=11CN1ms =[1C11m

applications.
Images from Wikipedia


http://link.springer.com/article/10.1007%2FBF02551274
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ivak1965-25
https://en.wikipedia.org/wiki/Deep_learning#cite_note-HOCH2001-36
https://arxiv.org/abs/1402.4735

DL in HEP?
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DL In HEP
The Big Picture...



HEP Experlments

e 5 technical components to HEP experiment:

 Accelerator. e.g. LHC collisions creating quickly decaying heavy
particles. Extremely high rate: 40 * O(50) Million collisions/sec.

 Detector. a big camera. ~ e.g. LHC 1.5 MB/event (60 TB/s)

* Pictures of long-lived decay products of short lived heavy/
Interesting particles.

* Sub-detectors parts: Tracking, Calorimeters, Muon system,
Particle ID (e.g. Cherenkov, Time of Flight)

DAQ/Trigger: Hardware/software

» Software: Reconstruction (Raw data -> particle “features”) /
Analysis (particles -> “physics”)

Computing: GRID Monarch Model “Cloud” Computing/Data
Management (software/hardware)




Frontiers

 Energy Frontier. Large Hadron Collider (LHC) at 13 TeV now, High Luminosity (HL)-
LHC by 2025, perhaps 33 TeV LHC or 100 TeV Chinese machine in a couple of
decades.

« Having found Higgs, moving to studying the SM Higgs find new Higgses

» Test naturalness (\Was the Universe and accident?) by searching for New Physics
like Supersymmetry that keeps Higgs light without 1 part in 10 fine-tuning of
parameters.

* Find Dark Matter (reasons to think related to naturalness)

 Intensity Frontier:

* B Factories: upcoming SuperKEKB/SuperBelle

* Neutrino Beam Experiments:

« Series of current and upcoming experiments: Nova, MicroBooNE, SBND,
ICURUS

» US’s flagship experiment in next decade: Long Baseline Neutrino Facility
(LBNF)/Deep Underground Neutrino Experiment (DUNE) at Intensity
Frontier

« Measure properties of b-quarks and neutrinos (newly discovered mass)... search
for matter/anti-matter asymmetry.

Damping Rings IR & detectors compressor

o Auxiliary Physics: Study Supernova. Search for Proton Decay and Dark Matter.

» Precision Frontier. International Linear Collider (ILC), hopefully in next decade. Most:
energetic e e machine.

e Precision studies of Higgs and hopefully new particles found at LHC. slciron



Why go Deep?

 DNN-based classification/regression generally out perform hand crafted algorithms.

« Better Algorithms

* In some cases, it may provide a solution where algorithm approach doesn’t exist or fails.
« Unsupervised learning: make sense of complicated data that we don’t understand or expect.
« Easier Algorithm Development. Feature Learning instead of Feature Engineering

» Reduce time physicists spend writing developing algorithms, saving time and cost. (e.g. ATLAS >
$250M spent software)

* Quickly perform performance optimization or systematic studies.

» Faster Algorithms

After training, DNN inference is often faster than sophisticated algorithmic approach.

DNN can encapsulate expensive computations, e.g. Matrix Element Method.

Generative Models enable fast simulations.

Already parallelized and optimized for GPUs/HPCs.

Neuromorphic processors.
11



HEP Problems



Where i1s ML needed?

* Traditionally ML Techniques in HEP
» Applied to Particle/Object Identification

« Signal/Background separation

* Here, ML maximizes reach of existing data/detector... equivalent to additional integral
luminosity.

* There is lots of interesting work here... and potential for big impact.
* Now we hope ML can help address looming computing problems of the next decade:
- Reconstruction
1. Intensity Frontier- LArTPC Automatic Algorithmic Reconstruction still struggling

2. Energy Frontier- HL-LHC Tracking- Pattern Recognition blows up due to
combinatorics

- Simulation

3. LHC Calorimetry- Large Fraction of ATLAS CPU goes into shower simulation.



| ArTPC Reconstruction

Neutrino Physics has a long history of hand scans.

e QScan: ICARUS user assisted reconstruction.

Full automatic reconstruction has yet to be

demonstrated.

* LArSoft project:

Decompression

!

Event Splitting

|

Filtering and
Deconvolution

AN

e art framework + LArTPC reconstruction

algorithm

e started in ArgoNeuT and contributed to/used
by many experiments.
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 Computing is perhaps the biggest challenge for the HL-LHC

Computing

Higher Granularity = larger events.

O(200) proton collision / crossing: tracking pattern recognition
combinatorics becomes untenable.

O(100) times data = multi exabyte datasets.
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Moore’s law has stalled. Cost of adding more transistors/silicon area

no longer decreasing.

Preliminary estimates of HL-LHC computing budget many times

larger than LHC.

e Solutions:

» Leverage opportunistic resources and HPC (most computation

* Highly parallel processors (e.g. GPUs) are already > 10x CPUs for

power in highly parallel processors).

certain computations.

* Trend is away from x86 towards specialized hardware (e.g.
GPUs, Mics, FPGAs, Custom DL Chips)

« Unfortunately parallelization (i.e. Multi-core/GPU) has been

extremely difficult for HEP.
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https://indico.cern.ch/event/346005/contributions/1749562/attachments/681981/936896/ECFA-HLLHC-Aix-Les-Bains-Krzewicki.pdf

HL-LHC Tracking

Tracking steps: hit prep, seeding, pattern recognition, track fitting, track cleaning

» Highly optimized already for offline reconstruction for Run 2

* ~30-50 proton collisions per beam crossing

» 1 kHz data stream, processed offline.

HL-LHC: ~ 200 proton collisions per beam crossing

e combinatorics cause pattern recognition time to grow exponentially

* Busy environment requires tracking at 40 MHz for trigger

Need Pattern Recognition that scales better with number of hits. Deep Learning?

Again an obstacle to applying deep learning techniques is accessibility to the data.

Tracking ML (David Rousseau, Andreas Salzberger, ..., AF): Hoping to have ML community develop solutions, mirroring the
HiggsML Challenge.

« ACTS: Standalone version of ATLAS Tracking Simulation/Reconstruction developed for this challenge.
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Data Analysis

 Objectives:

 Searches (hypothesis testing): Likelihood Ratio Test (Neyman-Pearson lemma)

| o . P(x|Hy)
e Measurements: Maximum Likelihood Estimate > kg
P(z|Hy)

 Limits (confidence intervals): Also based on Likelihood

Likelihood

n

p({x}]0) = Pois(n|v(0)) | | p(x|6)

e=1

* nlIndependent Events (e) with Identically Distributed Observables ({x})

e Significant part of Data Analysis is approximating the likelihood as best as we
can.



1

Approximating the Likelihood (i)

in Quantum Field Theory

* Physics is all about establishing a very precise “model” of the underlying 1

phenomena... so we can model our data very well.
Lepton/
Quark 4-vectors

—1

; : - - Soft QCD: Quark Fragmentation
1. Generation: Standard Model and New Physics are expressed in [ - nd Madronization ]

language of Quantum Field Theory.

 Enables multi-step ab-initio simulations:

= Feynman Diagrams simplify perturbative prediction of HEP

interactions among the most fundamental particles (leptons, quarks) Particle

4-vectors
2. Hadronization: Quarks turn to jets of particles via Quantum

Chromodynamics (QCD) at energies where theory is too strong to [

]‘<

compute perturbatively. Simulation: Particle OJ

Interactions with Detect
= Use semi-empirical models tuned to Data. T

3. Simulation: Particles interact with the Detector via stochastic creray
Processes Deposits in Detector

]‘<

= Use detailed Monte Carlo integration over the “micro-physics”

Digitization: Detector

4. Digitization: Ultimately the energy deposits lead to electronic signals in Response and Piloup Mixing]

the O(100 Million) channels of the detector.

M)

= Model using test beam data and calibrations.

Detector Response

b

« Qutput is fed through same reconstruction as real data.



| ikelihood Approximations

* Need F({xe}|0) of an observed event (e). The better we do, the more sensitive our measurements.
« Steps 2 (Hadronization) and 3 (Simulation) can only be done in the forward mode. ..
= cannot evaluate the likelihood.
e S0 we simulate a lot of events and use a Probability Density Estimator (PDE), e.g. a histogram.
e {xe} = {100M Detector Channels} or even { particle 4-vectors } are too high dimension.
* |nstead we derive {xe} = { small set of physics motivated observables }| = Lose information.
* [Isolate signal dominating regions of {xe} = Lose Efficiency.
« Sometimes use classifiers to further reduce dimensionality and improve significance
* Profile the likelihood in 1 or 2 (ideally uncorrelated) observables.
e Alternative, try to brute force calculate via Matrix Element Method:

P(p"**la) = = [ d®dxydxs| M, (p)|*W (p, p***)

e But it's technically difficult, computahonally expensive, mistreats hadronization, and avoids
simulation by highly simplifying the detector response.



Deep Learning
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DEEP LEARNING IN HEP e
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~eature Learning

» Feature Engineering: €.g. Event Reconstruction ~ Feature Extraction, Pattern Recognition, Fitting, ...
* Deep Neutral Networks can Learn Features from raw data.
 Example: Convolutional Neural Networks - Inspired by visual cortex

* Input. Raw data... for example 1D = Audio, 2D = Images, 3D = Video

« Convolutions ~ |learned feature detectors

- Feature Maps

* Pooling - dimension reduction / invariance

» Stack: Deeper layers recognize higher level concepts.

» Over the past few years, CNNs have lead to exponential improvement / superhuman performance on Image
classification challenges. Current best > 150 layers.

» Obvious HEP application: “Imaging” Detectors such as TPCs, High Granularity Calorimeters, or Cherenkov Ring Imaging.
e bl A

Feature maps .‘ ;,' 'f’ ,g o
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Neutrino Detectors

* Need large mass/volume to maximize chance of neutrino interaction.
e Technologies:
» Water/Oil Cherenkov
e Segmented Scintillators
Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.
* Provides tracking, calorimetry, and ID all in same detector.
e Chosen technology for US’s flagship LBNF/DUNE program.
o Usually 2D read-out... 3D inferred.
* Gas TPC: full 3D
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Neutrino PnysICS

Core Physics requires just measuring neutrino flavor and energy. HFadionic
80 eature
T : : — - I Map
Generally clean (low multiplicity) and high granularity. -
First HEP CNN application: Nova using Siamese Inception CNN. Caf™
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NEXT Experiment

Neutrinoless Double Beta Decay using Gas

TPC/SiPMs

Signal: 2 Electrons. Bkg: 1 Electron.

Hard to distinguish due to multiple scattering.

3D readout. ..

candidate for 3D Conv Nets.

Just a handful of signal events will lead to

noble prize

e (Can we trust a DNN at this level?
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NEXT Detector Optimization

* |dea 1: use DNNs to optimize detector.

 Simulate data at different resolutions

* Use DNN to quickly/easily assess best performance for given resolution.
Analysis Signal eff. (%) B.G. accepted (%)

DNN analysis (2 x 2 x 2 voxels) 86.2 4.7
Conventional analysis (2 x 2 x 2 voxels) 86.2 7.6
DNN analysis (10 x 10 x 5 voxels) 76.6 9.4
Conventional analysis (10 x 10 x 5 voxels) 76.6 11.0

* |dea 2: systematically study the relative importance of various physics/detector effects. .,

e Start with simplified simulation. Use DNN to assess performance.

e Turn on effects one-by-one.

2x2x2 voxels

Run description

Avg. accuracy (%)

Toy MC, ideal 99.8
Toy MC, realistic Ov 3/ distribution 98.9
Xe box GEANT4, no secondaries, no E-fluctuations 98.3
Xe box GEANT4, no secondaries, no E-fluctuations, no brem. 98.3
Toy MC, realistic Ov33 distribution, double multiple scattering 97.8
Xe box GEANT4, no secondaries 94.6
Xe box GEANT4, no E-fluctuations 93.0
Xe box, no brem. 92.4
Xe box, all physics 92.1
NEXT-100 GEANT4 91.6
10x10x5 voxels
NEXT-100 GEANT4 84.5

1.0

0.

Signal efficiency, s

0.

©
»
T

8t

6}

o
[N)

Fig. of merit, s/Vb o

oo

700

600

500

y (mm)

300

200

200 300 400 500 600 700

x (mm)

140

120

80

60

-——_———-___
~
-
-~

I —2Xx2Xx2 voxels

- = 10x10x5 voxels

.0

0.2 0.4 0.6

OO R N WP
P T T T

0.2 0.4 0.6
Background rejection, b

200

175

1150

125

100

175

50

25

480

420

1360

1300

180

120

60

y (keV)

o

Ener

=

Energy (ke



Semi-supervised Learning

* Basic idea: Train network to reproduce the input.

in pth output

 Example: Auto-encoders

code

De-noising auto-encoders: add noise to input only.

Sparse auto-encoders:

Sparse latent (code) representation can be exploited for
Compression, Clustering, Similarity testing, ...

decoder
encoder

Anomaly Detection
 Reconstruction Error

e Quitliers in latent space Bottl k Hidden L
ottleneck Hidden Layer

Transfer Learning \\ l
\\_, /] .

)

\\

)
[ X

* Small labeled training sample? fw/ k;
N / \ /’ N\ Yl

* Train auto-encoder on large unlabeled dataset (e.q. data). W, \__ \
4 ) >

e Train in latent space on small labeled data. (e.qg. rare M
signal MC). U

Y Y
/—\/‘/\ o~
()

* Easily think of a dozen applications.



| earning Representations

« Example: Daya Bay Experiment (Evan Racah, et al)

e Input: 8 x 24 PMT unrolled cylinder. Real Data (no simulation)

e 2 Studies:

Supervised CNN Classifier

» Labels from standard analysis: Prompt/Delayed Inverse Beta Decay,

Muon, Flasher, Other.

» Convolutional Auto-encoder (semi-supervised)

» Clearly separates muon and IBD delay without any physics knowledge.

e Potentially could have |ID’ed problematic data (e.g. flashers) much earlier.
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Networks?

» That means that any oscillation analysis can benefit fror
precise identification of the interaction in two ways:
» Estimating the lepton flavor of the incoming neutrino.
« Correctly identifying the type of neutrino interaction, t
better estimate the neutrino energy, aka is it a quasi
elastic event or a resonance event?

* Qur detectors are also often the perfect domain:
* Large ~uniform volumes where spatially invariant
response is a benefit.
* Usually only one or two detector systems.

t-SNE projection of final features to 2D

However our CNN achieves 73% efficiency and 76% purity on -
Ve selection at the s/vs+ b optimized cut.
Equivalent to 30% more exposure with the old PIDs.




Generative Models

Electromagnetic
shower (e, y)

» Likelihood Approximation relies simulation
* Most computationally expensive step, so any speedup has huge impact.
* More generally, simulation based on data would be a powerful tool.
e For example, we can build a Hadronization model purely from data.
 DNNs Generative Models enable building simulations purely from examples.

» Generative Adversarial Nets (Goodfellow, et. al. arxiv:1406.2661).
Simultaneously train 2 Networks:

» Discriminator (D) that tries to distinguish output and real example~
» Generator (G) that generate the output that is difficult to distingui
» Variational Auto-encoders:
» Learn a latent variable probabilistic model of the input dataset.
o Sample latent space and use decoder to generate data.

» Particle showering is slowest part of the micro-physics simulation...

» Various technigues for fast showering (e.g. shower template libraries) are : &
common.

* DNN Generative Models are being pursued inside the experiments (K.
Cranmer, G. Louppe, ...) for this task...



https://arxiv.org/pdf/-

Learning Particle Physics by Example:

Location-Aware Generative Adversarial Networks for

Physics Synthesis

Luke de Oliveira®, Michela Pag

* Lawrence Berkeley National Lab
® Department of Physics, Yale Un

E-mail: 1lukedeoliveira®@lbl.

ABSTRACT: We provide a bridg
and simulated physical processe
Adversarial Network (GAN) arc
energy depositions from particle
the Location-Aware Generative A
from simulated high energy partic
span over many orders of magnit
jet mass, n-subjettiness, etc.). W
of image quality and validity of (
a base for further explorations of

CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

Michela Paganini®’, Luke de Oliveira®, and Benjamin Nachman®

® Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
® Department of Physics, Yale University, New Haven, CT 06520, USA

E-mail: michela.paganini@yale.edu, lukedeoliveira@lbl.gov, bnachman@cern.ch

ABSTRACT: Simulation is a key component of physics analysis in particle physics and nuclear physics.
The most computationally expensive simulation step is the detailed modeling of particle showers inside
calorimeters. Full detector simulations are too slow to meet the growing demands resulting from large
quantities of data; current fast simulations are not precise enough to serve the entire physics program.
Therefore, we introduce CALOGAN, a new fast simulation based on generative adversarial neural
networks (GANs). We apply the CALOGAN to model electromagnetic showers in a longitudinally
segmented calorimeter. This represents a significant stepping stone toward a full neural network-based
detector simulation that could save significant computing time and enable many analyses now and
in the future. In particular, the CALOGAN achieves speedup factors comparable to or better than
existing fast simulation techniques on CPU (100x-1000x) and even faster on GPU (up to ~ 10°x))
and has the capability of faithfully reproducing many aspects of key shower shape variables for a variety
of particle types.

701.05927 pdf

https://arxiv.org/pdf/-

705.02355.pdf
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Timing

M. Paganini et al., 1705.02355

Generation Method | Hardware | Batch Size | milliseconds/shower
GEANT4 CPU N/A
T
CPU 10 5.11
128 2.19
1024 2.03
CALOGAN 7 A
4 3.68
GPU 128 0.021
512 0.014
1024 0.012 €—




Shower Shapes

(|

Check: does the LAGAN recover the true data distribution as
rojected onto a set of meaningful 1D manifolds”
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Calorimetry with
Deep Learning



How do we “see” particles”

e Particles deposit their energy in a stochastic process know as

. . . ABSORBER
“showering”, secondary particles, that in turn also shower. o’y
* Number of secondary particles ~ Energy of initial particle. . ,,___d.:/’
MnYn P /"0// ’\,\,\,\/\A
* Energy resolution improves with energy: o(E) / E = a///E ® b/E @ c. \[‘\.@,\1_’_\:‘;_:__‘\Mf\"’ _
* a =sampling, b = noise, ¢ = leakage. g E ‘;’ Mi
; XO e
* Density and Shape of shower characteristic of type of particle.
* Electromagnetic calorimeter. Low Z medium /\/\/\
Light particles: electrons, photons, m —yy interact with electrons WN /AN A/A
in medium - AN

* Hadronic calorimeters: High Z medium

* Heavy particles: Hadrons (particles with quarks, e.g. charged WV\N\/W\/\\NV\VWNV\NA/V\V\M\\/\/\

pions/protons, neutrons, or jets of such particles)

e Punch through low Z.

* Produce secondaries through strong interactions with the
nucleus in medium.

* Unlike EM interactions, not all energy is observed.




ATLAS Calorimeter

* Ideally suited for “imaging” ~ 64 x 36 x 7 3D Image
e« 200K Calorimeter cells measure energy deposits.

* Interesting Challenges: non-uniform granularity,
cylindrical geometry.

* High impact:

* Improve Identification and energy resolution make
the peaks stand out.

* Turn DNN into generative model for fast shower
simulation.

e High potential: we don'’t use all information so room for
improvement

e e/gamma: take full advantage of the high granularity
and accordion structure

* hadronic calibration: take full advantage of
longitudinal sampling and other handles

e particle flow: correlate with tracks (and vertex) for
hadronic calibration, taus, jet-tagging, boosted
objects...

- Problem: Private Data...

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr eleciromagnetic
end-cap (EMEC)

LAr electromagnetic
barrel

Towers in Sampling 3
AoxAn =0.0245-0.05

>




Calorimeter Dataset

* CLIC is a proposed CERN project for a linear accelerator of
electrons and positrons to TeV energies (~ LHC for protons)

 LCD is a detector concept.

* Not a real experiment yet, so we could simulate data and make
it public.

* The LCD calorimeter is an array of absorber material and silicon
sensors comprising the most granular calorimeter design available

* Data is essentially a 3D image
« With at effective eta/phi resolution of 0.003x0.003, we can down

sample to get ~ ATLAS granularity: 0.025x0.1 (pre-sampler) to
0.2x0.1 Tile D.

/- 0

+ ' .
® Data: 1 million single e,y, 7 , 7 . 10-500 GeV of energy. | Electromagnetic

x} shower (e, y)




Calorimetry with Deep Learning: Particle
Classification, Energy Regression, and Simulation for
High-Energy Physics

Federico Carminati, Gulrukh Khattak, Maurizio Pierini Amir Farbin
CERN Univ. of Texas Arlington
Benjamin Hooberman, Wei Wei, and Matt Zhang Vitéria Barin Pacela
Univ. of Illinois at Urbana-Champaign Univ. of Helsinki

California Institute of Technology

Sofia Vallecorsafac Maria Spiropulu and Jean-Roch Vlimant
Gangneung-Wonju National Univ. California Institute of Technology
Abstract

We present studies of the application of Deep Neural Networks and Convolutional
Neural Networks for the classification, energy regression, and simulation of parti-
cles produced in high-energy particle collisions.We train cell-based Neural Nets
that provide significant improvement in performance for particle classification and
energy regression compared to feature-based Neural Nets and Boosted Decision

Trees, and Generative Adversarial Networks that provide reasonable modeling of
several but not all shower features.




1. e/y Particle Identification (Classification)

® Photon/lepton ID requires factor ~10000 jet rejection
e Jet like photon/lepton classification tasks:
® Task I: Electrons vs Electromagnetic :rc+/_ (HCAL/ECAL Energy < 0.025)
® Task 2: Photons vs Merging J'EO (2y opening angel < 0.01 rad)
® Comparison:
® Feature based BDT and DNN
® Cell-based DNN (fully connected).

® Significant Improvement with cell-based DNNEs.
0

Y VS. T evs. T
Model acc. AUC Aegy ARpke | ace. AUC A6y  ARpkge
BDT 83.1% 89.8% - 93.8% 98.0% - -

DNN (features) | 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
DNN (cells) 872% 93.5% 9.4% 1.63 9.4% 999% 4.9% 151

Table 1: Performance parameters for BDT and DNN classifiers.

ROC curve for y vs. ©t° classifier ROC curve for e vs. n* classifier
5 1.0] 2 1.0] ~
= = [
3 8
2 0.8 9 0.9
= =
2 5
= 0.61 =
= g
95] ]
Z 0.4 g 0.7
0.21 — DNN (cells) 0.6 — DNN (cells)
DNN (features) ' DNN (features)
0.0 —— BDT 05 — BDT
00 02 04 06 08 1.0 T00 01 02 03 04 05

n® background efficiency n* background efficiency



2. Energy Calibration (Regression)

® Energy resolution improves with energy:.

e 0(E)/ E = aNE ® b/E ® c.

® g = sampling, b = noise, ¢ = leakage.

o Comparison:

e Simple calibration: Sum energies (no noise) and scale.

® CNN calibration: Cells — Particle energy
® Significant Improvement with CNN

Simple Linear Model
Particle Type a b c
Photons 55.5 1.85 1245
Electrons 42.3 131 1037
Neutral pions 55.3 1.71 1222

Charged pions 442 25 11706
CNN Model
Particle Type a b C

Photons 18.3 0.75 131
Electrons 18.7 0.574 111
Neutral pions 19.3  0.45 231
Charged pions 114  1.02 893

102 -

Energy resolution

»- Linear fit: Photons
%+ Linear fit: Electrons
i+ Linear fit: Neutral Pions

Linear fit: Charged Pions

® CNN: Photons

# CNN: Electrons

m CNN: Neutral Pions
CNN: Charged Pions

100 200 300 400

True Energy (GeV)

500



3. Simulation (Generative Model)

e Physics measurements typically require extremely detailed and precise
simulation,

® Software packages (e.g. Geant4) simulated the well understood micro-
physics governing the interaction of particles with matter.

e Generally very CPU intensive

o Example: ATLAS experiment uses half of the experiment’s computing
resources for simulation.

® Task: CNN GAN conditioned on particle energy
® Accelerate simulation by many orders of magnitude.

e Promising start... but not yet faithfully reproducing all commonly used
features extracted from generated images.

— GAN 030] —— GAN
Geant ozs| ’ Geant

. . 3 . 4.
ECAL 2nd y moment [N_;] ECAL 2nd z moment [N ;]



Some Images

O Slice energy spectrum

O Start with photons & electrons ' : -
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Jet Physics with Deep
_earning



Modern Machine Learning

N

for Classification, Regression, /”ﬁ .ﬁ‘

and Generation in Jet Physics SERKELEY LAB
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JET SUBSTRUCTURE

Many scenarios for physics Beyond the Standard Model

include highly boosted W, Z, H bosons or top quarks

Low top pr High top pt

q
W _
g W boost .
t _
b
b

|dentitying these rests on subtle substructure inside jets

e an enormous number of theoretical effort in developing
observables and techniques to tag jets like this

b - /l_;// 0 vt. Rii
N = Y=\t
"\ mass drop ilter f‘.




T
Goal: Find W jets in}
an enormous sea of =
generic g/g jets

x4

W bosons are naturally boosted if they result
from the decay of something even heavier

V Searching for new particles

decaying into boosted W
2 bosons requires looking at the
" radiation pattern inside jets

like a digital image!




Why images?

W - qq

there is information encoded in the
physical distance between pixels




Pre-processing & spacetime symmetries

One of the first typical steps is pre-processing

Can help to learn faster & smarter; but must be careful!



Modern Deep NN'’s for Classification

T
S 130~ Boosted W boson
o . L, mass+t,,,
= versus quark/gluon jet
< mass+AR
o
P r — 1,,+AR
E \
& 100" /\:e‘ -~ DNN
A o ...what the DNN
C Random is learning is
T DNN active R&D!
N~ . . .
— ~saevariations -
>0 de Oliviera et al. See also
e 1511.05190
| T o

Pr(label signal | signal)



FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

VP

VBG NNS vBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB JJR NN

so much more fun than

VBG

Analogy: N

going TO NP

word — particle N\

to DT NN

arsing — jet algorithm
p g J 9 trlle denltist

R —




QCD-INSPIRED RECURSIVE NEURAL NETWORKS

1/ Background efficiency
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W-jet tagging example
using data from Dawe, et
al arXiv:1609.00607

down-sampling by
projecting into images
looses information

RNN needs much less
data to train!



Neural Message Passing for Jet Physics

Isaac Henrion, Johann Brehmer, Joan Bruna, Kyunghun Cho, Kyle Cranmer
Center for Data Science
New York University
New York, NY 10012
{henrion% johann.brehmer, bruna, kyunghyun, kyle.cranmer®}@nyu.edu

Gilles Louppe Gaspar Rochette
Department of Computer Science Department of Computer Science
University of Liege Ecole Normale Supérieure
Belgium Paris, France
g.louppe@ulg.ac.be gaspar.rochette@ens.fr
Abstract

Supervised learning has incredible potential for particle physics, and one appli-
cation that has received a great deal of attention involves collimated sprays of
particles called jets. Recent progress for jet physics has leveraged machine learning
techniques based on computer vision and natural language processing. In this work,
we consider message passing on a graph where the nodes are the particles in a
jet. We design variants of a message-passing neural network (MPNN); (1) with a
learnable adjacency matrix, (2) with a learnable symmetric adjacency matrix, and
(3) with a set2set aggregated hidden state and MPNN with an identity adjacency
matrix. We compare these against the previously proposed recursive neural network
with a fixed tree structure and show that the MPNN with a learnable adjacency
matrix and two message-passing iterations outperforms all the others.



Table 1: Summary of classification performance for several approaches.

Network Iterations ROC AUC Re—50%
RecNN-£; (without gating) [10] 1 0.9185 4 0.0006 68.3 £ 1.8
RecNN-£; (with gating) [10] 1 0.9195 + 0.0009 74.3+2.4
RecNN-desc-pr (without gating) [10] | 0.9189 + 0.0009 704 + 3.6
RecNN-desc-pr (with gating) [10] | 0.9212 + 0.0005 83.3 + 3.1
RelNet 1 0.9161 = 0.0029 67.69 4 6.80
MPNN (directed) 1 0.9196 £ 0.0015  89.35 £ 3.54
MPNN (directed) 2 0.9223 4+ 0.0008 98.26 4 4.28
MPNN (directed) 3 0.9188 +0.0031 85.93 + &8.50
MPNN (undirected) | 0.9193 £0.0015 86.41 £+ 3.80
MPNN (undirected) 2 0.8949 4+ 0.1004 97.27 4+ 5.02
MPNN (undirected) 3 0.9185 4+ 0.0036  84.53 & 8.64
MPNN (set, directed) | 0.9189 £0.0017  88.23 =4.53
MPNN (set, directed) 2 0.9191 +0.0046 87.46 = 14.14
MPNN (set, directed) 3 0.9176 +0.0049 88.33 +-9.84
MPNN (set, undirected) | 0.9196 £ 0.0014  85.65 £+ 4.48
MPNN (set, undirected) 2 0.9220 £ 0.0007 94.70 4+ 2.95
MPNN (set, undirected) 3 0.9158 +0.0054 75.94 + 12.54
MPNN (1d) 1 0.9169 4+ 0.0013  74.75 & 2.65
MPNN (1d) 2 0.9162 4+ 0.0020 74.41 4 3.50
MPNN (1d) 3 0.9158 4= 0.0029  74.51 4+ 5.20

- Making your data into an image isn’'t always the best idea.



Final Remarks

Deep Learning can help get the most out of a given accelerator, detector, and data set.
Deep Learning can help design better experiments.
Deep Learning may help address HEP problems:

o US’s flagship project, DUNE, and other LArTPC experiments need help with automatic
reconstruction. They are ideally suited for DNNSs.

« Computing for HL-LHC will be prohibitively expensive unless we find some clever
techniques.

Over the past couple of years many DL solutions have been demonstrated, often with toys...
Over the next few years:
e Bring them into our experiments and make them realistic
« Target physics measurements where DL can have significant impact
* Move DL to production and make DL mainstream

Deep Learning will fundamentally change how scientific computing is done...



Semi-supervised Learning

* Basic idea: Train network to reproduce the input.

in pth output

 Example: Auto-encoders

code

De-noising auto-encoders: add noise to input only.

Sparse auto-encoders:

Sparse latent (code) representation can be exploited for
Compression, Clustering, Similarity testing, ...

decoder
encoder

Anomaly Detection
 Reconstruction Error

e Quitliers in latent space Bottl k Hidden L
ottleneck Hidden Layer

Transfer Learning \\ l
\\_, /] .

)

\\

)
[ X

* Small labeled training sample? fw/ k;
N / \ /’ N\ Yl

* Train auto-encoder on large unlabeled dataset (e.q. data). W, \__ \
4 ) >

e Train in latent space on small labeled data. (e.qg. rare M
signal MC). U

Y Y
/—\/‘/\ o~
()

* Easily think of a dozen applications.
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Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from —1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally in (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

https://arxiv.org/pdf/1606.03657.pdf
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QCD-INSPIRED RECURSIVE NEURAL NETWORKS

(arXiv:1702.00748)
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Exciting New Directions

So far only scratches the surface
...this is a very active field of research!
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Oliveira, et. al arXiv:1511.05190

D E E P I_ E A R N | N G V S . T H E O RY Whiteson, et al arXiv:1603.09349

While the DNN shows a significant improvement with
respect to the jet mass combined with single theory
inspired variable (eg. 21, D3), only a small improvement with
respect to a BDT using several theory-inspired variables
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the Jet Image

J. Cogan et al. JHEP 02 (2015) 118
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