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Plan
• One slide on Dark Matter in HEP  

• One slide introducing Deep Learning 

• Deep Learning in HEP: The Big Picture, the Problems, and Examples 

• Many interesting Deep Learning topics in HEP I will not mention… 
e.g. Adversarial Techniques. 

• Focus on Images: 

• Three techniques: Feature Learning, Semi-supervised Learning, 
Generative Model 

• Calorimetry with Deep Learning 

• Jet Physics with Deep Learning



Dark Matter in HEP
• Solutions to the Hierarchy Problem 

• Often evoke some conserved quantity 

•  e.g. R-parity in SUSY  

• Leads to a stable particle ~ Dark Matter candidate 

• More empirical models: add relevant operators to the Standard 
Model Lagrangian  

• Collider-based Experiments 

• Produce new heavy particles 

• Decay to the DM particle 

• Leave Missing energy signature 

• Beam Dump Experiments

• Produce fast moving DM in the target, look for interaction in 
detector
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FIG. 1. Direct production of scalar dark matter via the vector portal. The leading-order process is shown on the left, which
is helicity suppressed in the forward direction. The process on the right is higher order in ↵s, and also phase space suppressed,
but has less helicity suppression in the forward direction.
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FIG. 2. Direct production of dark matter via the scalar por-
tal. The solid gluon fusion ggh vertex is generated at 1-loop.

FIG. 3. The total production cross section of a vector media-
tor at T2K and MINOS energies as a function of the mediator
mass. The solid and dashed curves indicate the cross sections
for pp ! V and pn ! V respectively. The PDF scale has
been fixed to Q = mV .

at T2K ND280 and MINOS in the case that
mV = 1 GeV and m� = 300 MeV. We fo-
cus on the o↵-axis ND280 detector at T2K,
to contrast with the on-axis detector at MI-
NOS in sampling the angular production dis-
tribution. However, comparing ND280 to the
on-axis INGRID detector at T2K would pro-
vide a similar contrast. In the bottom left of
Fig. 4, we zoom in on the relevant angular re-
gion for the o↵-axis T2K ND280 near detector

and show the scalar DM angular distribution
for mV = 1 GeV and several DM masses pro-
duced in pp collisions. We do the same in the
range of angles around the MINOS near detec-
tor in the bottom right of Fig. 4. As the mass
of the DM is increased, it is produced in the
more forward direction since its velocity in the
V rest frame decreases. However, the angu-
lar distribution of scalar DM produced via a
vector mediator, Eq. (10), suppresses the pro-
duction of DM along the beam direction itself.
Thus, despite the smaller cross section for the
production of vector mediators as a result of
the lower energy of its beam, a larger number
of DM particles may pass through the o↵-axis
T2K ND280 near detector than the on-axis
MINOS near detector. This suppression along
the beam axis is lessened somewhat when con-
sidering higher-order production mechanisms
like the diagram on the right of Fig. 1, which
we do not include in this study.

We show the energy distribution of scalar DM
for mV = 1 GeV and a range of m� in pp
collisions for T2K at ✓ = 2� and for MINOS at
✓ = 0.025� in Fig. 5.

For a scalar mediator, the leading-order direct
production cross section is
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Here, ⌧ = m2
S/s and the PDF fg (x) is the

probability of finding a gluon with momentum
fraction x in a nucleon. Up to threshold e↵ect
corrections, N counts the number of quarks
with a mass greater than ⇠ 0.2mS [17].

The DM distributions in the lab frame can be
related to the di↵erential production cross sec-
tion in the same way as in the vector mediator
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• Direct production: This corresponds to
hadron-level processes such as pp(n) ! X⇤ !
�̄� (or �†�) as shown in Figs. 1 and 2. In prac-
tice, since X can decay to �̄�, we will use the
narrow width approximation so that X is pro-
duced on-shell. In this approximation, valid to
O �e02,�2

�
, the cross section for the production

of a DM pair can be written as

� (pp(n) ! X⇤ ! �̄�)

= � (pp(n) ! X) Br (X ! �̄�) . (7)

The direct production cross section of a vector
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where eq is the charge of quark q in units
of the positron electric charge, ⌧ = m2

V /s,
and

p
s is the hadron-level center-of-mass en-

ergy. The parton distribution function (PDF)
fq/p(n) (x) gives the probability of extracting
the quark q with momentum fraction x from a
proton (neutron) and similarly for fq̄/p(n) (x).
We have omitted the scale, Q, at which the
PDFs are evaluated. To obtain estimates, we
use CTEQ6.6 PDFs [16] and set Q = mV ;
varying Q in between mV /2 and 2mV resulted
in an uncertainty in the production cross sec-
tion of less than ⇠ 30% for mV > 1 GeV at
T2K and MINOS beam energies. Higher-order
QCD corrections are large, introducing an er-
ror that can potentially be O(1).

The production cross section as a function of
the DM lab frame energy, E�, and the an-
gle between its lab frame momentum and the
beam direction, ✓, can be related to the di↵er-
ential cross section in Eq. (8) through
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where ✓̂ is the angle between the momentum
of � and the beam in the V rest frame and
the quantity in square brackets is the Jaco-
bian associated with this variable change. The
function g describes the angular distribution
of the DM in the V rest frame. For scalar DM
produced through a vector mediator, this is
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We will find the distribution of V momenta
useful,
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where mT = mp,n is the target mass, pB is the
momentum of the beam, �� = pB/

p
s, and

� = 1/
p

1 � �2.

For illustration, in Figs. 3–5 we present the
resulting direct production distributions for a
vector mediator that subsequently decays to
scalar DM at the T2K and MINOS experi-
ments, where Ebeam = 30, 120 GeV (

p
s '

7.6, 15.1 GeV), respectively; see Sec. 4 for fur-
ther details of these experiments. Fig. 3 shows
the total production cross section for pp and
pn collisions at T2K and MINOS as a func-
tion of the vector mediator mass. After inte-
grating over energy, the angular distribution
of scalar DM is shown in the top of Fig. 4
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FIG. 1. Direct production of scalar dark matter via the vector portal. The leading-order process is shown on the left, which
is helicity suppressed in the forward direction. The process on the right is higher order in ↵s, and also phase space suppressed,
but has less helicity suppression in the forward direction.
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FIG. 2. Direct production of dark matter via the scalar por-
tal. The solid gluon fusion ggh vertex is generated at 1-loop.

FIG. 3. The total production cross section of a vector media-
tor at T2K and MINOS energies as a function of the mediator
mass. The solid and dashed curves indicate the cross sections
for pp ! V and pn ! V respectively. The PDF scale has
been fixed to Q = mV .

at T2K ND280 and MINOS in the case that
mV = 1 GeV and m� = 300 MeV. We fo-
cus on the o↵-axis ND280 detector at T2K,
to contrast with the on-axis detector at MI-
NOS in sampling the angular production dis-
tribution. However, comparing ND280 to the
on-axis INGRID detector at T2K would pro-
vide a similar contrast. In the bottom left of
Fig. 4, we zoom in on the relevant angular re-
gion for the o↵-axis T2K ND280 near detector

and show the scalar DM angular distribution
for mV = 1 GeV and several DM masses pro-
duced in pp collisions. We do the same in the
range of angles around the MINOS near detec-
tor in the bottom right of Fig. 4. As the mass
of the DM is increased, it is produced in the
more forward direction since its velocity in the
V rest frame decreases. However, the angu-
lar distribution of scalar DM produced via a
vector mediator, Eq. (10), suppresses the pro-
duction of DM along the beam direction itself.
Thus, despite the smaller cross section for the
production of vector mediators as a result of
the lower energy of its beam, a larger number
of DM particles may pass through the o↵-axis
T2K ND280 near detector than the on-axis
MINOS near detector. This suppression along
the beam axis is lessened somewhat when con-
sidering higher-order production mechanisms
like the diagram on the right of Fig. 1, which
we do not include in this study.

We show the energy distribution of scalar DM
for mV = 1 GeV and a range of m� in pp
collisions for T2K at ✓ = 2� and for MINOS at
✓ = 0.025� in Fig. 5.
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production cross section is

� (pp(n) ! S) =
↵2
sGFN

2✓2

288
p
2⇡

(14)

⇥
X

q

Z 1

⌧

dx

x
⌧fg (x) fg

⇣⌧
x

⌘
.

Here, ⌧ = m2
S/s and the PDF fg (x) is the

probability of finding a gluon with momentum
fraction x in a nucleon. Up to threshold e↵ect
corrections, N counts the number of quarks
with a mass greater than ⇠ 0.2mS [17].

The DM distributions in the lab frame can be
related to the di↵erential production cross sec-
tion in the same way as in the vector mediator
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mass. The solid and dashed curves indicate the cross sections
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been fixed to Q = mV .

at T2K ND280 and MINOS in the case that
mV = 1 GeV and m� = 300 MeV. We fo-
cus on the o↵-axis ND280 detector at T2K,
to contrast with the on-axis detector at MI-
NOS in sampling the angular production dis-
tribution. However, comparing ND280 to the
on-axis INGRID detector at T2K would pro-
vide a similar contrast. In the bottom left of
Fig. 4, we zoom in on the relevant angular re-
gion for the o↵-axis T2K ND280 near detector

and show the scalar DM angular distribution
for mV = 1 GeV and several DM masses pro-
duced in pp collisions. We do the same in the
range of angles around the MINOS near detec-
tor in the bottom right of Fig. 4. As the mass
of the DM is increased, it is produced in the
more forward direction since its velocity in the
V rest frame decreases. However, the angu-
lar distribution of scalar DM produced via a
vector mediator, Eq. (10), suppresses the pro-
duction of DM along the beam direction itself.
Thus, despite the smaller cross section for the
production of vector mediators as a result of
the lower energy of its beam, a larger number
of DM particles may pass through the o↵-axis
T2K ND280 near detector than the on-axis
MINOS near detector. This suppression along
the beam axis is lessened somewhat when con-
sidering higher-order production mechanisms
like the diagram on the right of Fig. 1, which
we do not include in this study.

We show the energy distribution of scalar DM
for mV = 1 GeV and a range of m� in pp
collisions for T2K at ✓ = 2� and for MINOS at
✓ = 0.025� in Fig. 5.

For a scalar mediator, the leading-order direct
production cross section is

� (pp(n) ! S) =
↵2
sGFN

2✓2

288
p
2⇡

(14)

⇥
X

q

Z 1

⌧

dx

x
⌧fg (x) fg

⇣⌧
x

⌘
.

Here, ⌧ = m2
S/s and the PDF fg (x) is the

probability of finding a gluon with momentum
fraction x in a nucleon. Up to threshold e↵ect
corrections, N counts the number of quarks
with a mass greater than ⇠ 0.2mS [17].

The DM distributions in the lab frame can be
related to the di↵erential production cross sec-
tion in the same way as in the vector mediator

Typical Spectrum - mSUGRA
G
~



Artificial Neural Networks
• Biologically inspired computation, (first attempts in 1943) 

• Probabilistic Inference: e.g. signal vs background 

• Universal Computation Theorem (1989) 

• Multi-layer (Deep) Neutral Networks: 

• Not a new idea (1965), just impractical to train. Vanishing 
Gradient problem (1991) 

• Solutions: 

• New techniques: e.g. better activation or layer-wise training 

• More training: big training datasets and lots of 
computation … big data and GPUs 

• Deep Learning Renaissance. First DNN in HEP (2014). 

• Amazing Feats: Audio/Image/Video recognition, captioning, 
and generation. Text (sentiment) analysis. Language 
Translation. Game playing agents.   

• Rich field: Variety of architectures, techniques, and 
applications. 

Images from Wikipedia

http://link.springer.com/article/10.1007%2FBF02551274
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ivak1965-25
https://en.wikipedia.org/wiki/Deep_learning#cite_note-HOCH2001-36
https://arxiv.org/abs/1402.4735
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DL in HEP 
The Big Picture…



HEP Experiments
• 5 technical components to HEP experiment:  

• Accelerator: e.g. LHC collisions creating quickly decaying heavy 
particles. Extremely high rate: 40 * O(50) Million collisions/sec. 

• Detector: a big camera. ~ e.g. LHC 1.5 MB/event (60 TB/s) 
• Pictures of long-lived decay products of short lived heavy/

interesting particles.  
• Sub-detectors parts: Tracking, Calorimeters, Muon system, 

Particle ID (e.g. Cherenkov, Time of Flight)  
• DAQ/Trigger: Hardware/software
• Software: Reconstruction (Raw data -> particle “features”) / 

Analysis (particles -> “physics”) 
• Computing: GRID Monarch Model “Cloud” Computing/Data 

Management (software/hardware)

ATLAS CMS
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Collisions Producing Top Quarks! 



Chapter 3
The International Linear Collider
Accelerator

3.1 The ILC Technical Design
3.1.1 Overview

The International Linear Collider (ILC) is a high-luminosity linear electron-positron collider based on
1.3 GHz superconducting radio-frequency (SCRF) accelerating technology. Its centre-of-mass-energy
range is 200–500 GeV (extendable to 1 TeV). A schematic view of the accelerator complex, indicating
the location of the major sub-systems, is shown in Fig. 3.1:

central region
5 km

2 km

positron
main linac

11 km

electron
main linac

11 km

2 km

Damping Rings

e+ source

e- source

IR & detectors

e- bunch 
compressor

e+ bunch 
compressor

Figure 3.1. Schematic layout of the ILC, indicating all the major subsystems (not to scale).

• a polarised electron source based on a photocathode DC gun;

• a polarised positron source in which positrons are obtained from electron-positron pairs by
converting high-energy photons produced by passing the high-energy main electron beam
through an undulator;

• 5 GeV electron and positron damping rings (DR) with a circumference of 3.2 km, housed in a
common tunnel;

• beam transport from the damping rings to the main linacs, followed by a two-stage bunch-
compressor system prior to injection into the main linac;

• two 11 km main linacs, utilising 1.3 GHz SCRF cavities operating at an average gradient of
31.5 MV/m, with a pulse length of 1.6 ms;

9

Frontiers
• Energy Frontier: Large Hadron Collider (LHC) at 13 TeV now, High Luminosity (HL)- 

LHC by 2025, perhaps 33 TeV LHC or 100 TeV Chinese machine in a couple of 
decades.  

• Having found Higgs, moving to studying the SM Higgs find new Higgses 

• Test naturalness (Was the Universe and accident?) by searching for New Physics 
like Supersymmetry that keeps Higgs light without 1 part in 10

 
fine-tuning of 

parameters.   

• Find Dark Matter (reasons to think related to naturalness) 

• Intensity Frontier:  

• B Factories: upcoming SuperKEKB/SuperBelle 

• Neutrino Beam Experiments:  

• Series of current and upcoming experiments: Nova, MicroBooNE, SBND, 
ICURUS 

• US’s flagship experiment in next decade: Long Baseline Neutrino Facility 
(LBNF)/Deep Underground Neutrino Experiment (DUNE) at Intensity 
Frontier

• Measure properties of b-quarks and neutrinos (newly discovered mass)… search 
for matter/anti-matter asymmetry. 

•  Auxiliary Physics: Study Supernova. Search for Proton Decay and Dark Matter.   

• Precision Frontier: International Linear Collider (ILC), hopefully in next decade. Most 
energetic e

+
e

-
 machine.  

• Precision studies of Higgs and hopefully new particles found at LHC.

● Long Baseline Neutrino 
Experiment is the next major 
neutrino experiment 
proposed

– Build a large scale (34 kTon) 
LArTPC deep underground

– Build it at a baseline that 
optimizes the oscillation 
parameters to probe CP 
violation and the mass 
hierarchy

– Build  it deep underground to 
maximize your sensitivity and 
allow you to do more physics

– Shoot a powerful beam of 
neutrinos at it

LBNELBNE
LLongong B Baselineaseline N Neutrinoeutrino E Experimentxperiment



Why go Deep?
• Better Algorithms 

• DNN-based classification/regression generally out perform hand crafted algorithms. 

• In some cases, it may provide a solution where algorithm approach doesn’t exist or fails. 

• Unsupervised learning: make sense of complicated data that we don’t understand or expect.  

• Easier Algorithm Development: Feature Learning instead of Feature Engineering  

• Reduce time physicists spend writing developing algorithms, saving time and cost. (e.g. ATLAS > 
$250M spent software) 

• Quickly perform performance optimization or systematic studies.  

• Faster Algorithms 

• After training, DNN inference is often faster than sophisticated algorithmic approach. 

• DNN can encapsulate expensive computations, e.g. Matrix Element Method.   

• Generative Models enable fast simulations. 

• Already parallelized and optimized for GPUs/HPCs.  

• Neuromorphic processors.
11



HEP Problems



Where is ML needed?
• Traditionally ML Techniques in HEP 

• Applied to Particle/Object Identification 

• Signal/Background separation 

• Here, ML maximizes reach of existing data/detector… equivalent to additional integral 
luminosity. 

• There is lots of interesting work here… and potential for big impact. 

• Now we hope ML can help address looming computing problems of the next decade: 

• Reconstruction

1. Intensity Frontier- LArTPC Automatic Algorithmic Reconstruction still struggling 

2. Energy Frontier- HL-LHC Tracking- Pattern Recognition blows up due to 
combinatorics 

• Simulation

3. LHC Calorimetry- Large Fraction of ATLAS CPU goes into shower simulation. 
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Reconstruction Chain
• Left: Our provisional 

 model for a DUNE FD  
   reconstruction chain. 
!
• Between LBNE and  
   LBNO, every step in 
   this chain exists. !
    - Great starting point 
       for DUNE! 
!
• Will summarise 
   current status over 
   next few slides.

LArTPC Reconstruction
• Neutrino Physics has a long history of hand scans.  

• QScan: ICARUS user assisted reconstruction.   

• Full automatic reconstruction has yet to be 
demonstrated.  

• LArSoft project:  

• art framework + LArTPC reconstruction 
algorithm 

• started in ArgoNeuT and contributed to/used 
by many experiments. 

• Full neutrino reconstruction is still far from 
expected performance.

Selection of  νe events
•  Reference points and vertices can be defined to mark interesting 

features of the event in a 2D view (primary interaction, delta rays, 
decay point of tracks, shower features, muon begin/end point for the 
momentum measurement via MCS); 

•  They can be selected manually in Qscan and can be associated to 
clusters and matched between different views providing additional 
input to 3D reconstruction; 

•  An automatic tool for the primary vertex identification is available; 
•  Reference points and vertices can be saved in root files; 

Reference points and vertices

Slide#  : 9ICARUS_2015



Computing

Plots from here. 

M.Krzewicki, ECFA HL-LHC Computing, October 23, 2014

CPU online+offline

• rough estimates of the CPU resources needed, based on extrapolations 
• it is clear CPU usage must be improved
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Historical growth of 25%/year 
  

Room for improvement 
  

M.Krzewicki, ECFA HL-LHC Computing, October 23, 2014

ATLAS projections

• need to worry about disk and CPU usage for HL-LHC as well as access to disk 
(IO and capacity!)

15

Rolf Seuster Trigger, Online and Offline Computing WS 11

Projection to Run-4

-> need to worry about disk and CPU usage for HL-LHC
    as well as access to disk (IO and capacity ) !

• Computing is perhaps the biggest challenge for the HL-LHC 

• Higher Granularity = larger events. 

• O(200) proton collision / crossing: tracking pattern recognition 
combinatorics becomes untenable. 

• O(100) times data = multi exabyte datasets.  

• Moore’s law has stalled: Cost of adding more transistors/silicon area 
no longer decreasing. 

• Preliminary estimates of HL-LHC computing budget many times 
larger than LHC. 

• Solutions: 

• Leverage opportunistic resources and HPC (most computation 
power in highly parallel processors). 

• Highly parallel processors (e.g. GPUs) are already > 10x CPUs for 
certain computations. 

• Trend is away from x86 towards specialized hardware (e.g. 
GPUs, Mics, FPGAs, Custom DL Chips) 

• Unfortunately parallelization (i.e. Multi-core/GPU) has been 
extremely difficult for HEP.

https://indico.cern.ch/event/346005/contributions/1749562/attachments/681981/936896/ECFA-HLLHC-Aix-Les-Bains-Krzewicki.pdf


HL-LHC Tracking
• Tracking steps: hit prep, seeding, pattern recognition, track fitting, track cleaning 

• Highly optimized already for offline reconstruction for Run 2 

•  ~30-50 proton collisions per beam crossing  

• 1 kHz data stream, processed offline.  

• HL-LHC: ~ 200 proton collisions per beam crossing 

• combinatorics cause pattern recognition time to grow exponentially 

• Busy environment requires tracking at 40 MHz for trigger 

• Need Pattern Recognition that scales better with number of hits. Deep Learning?  

• Again an obstacle to applying deep learning techniques is accessibility to the data. 

• Tracking ML (David Rousseau, Andreas Salzberger, …, AF): Hoping to have ML community develop solutions, mirroring the 
HiggsML Challenge.   

• ACTS: Standalone version of ATLAS Tracking Simulation/Reconstruction developed for this challenge.

07/05/16 DS@HEP2016, Simons Foundation, vlimant@cern.ch 25

Cost of Tracking

● Charged particle track reconstruction is one of the most CPU consuming
task in  event reconstruction

● Optimizations (to fit in computational budgets)  mostly saturated

● Large fraction of CPU required in the HLT. Cannot perform tracking
inclusively at CMS and ATLAS. Online tracking strategy for LHCb.

Tracking

• High luminosity means high pileup

• Combinatorics of charged particle tracking become

extremely challenging for GPDs

• Generally sub-linear scaling for track reconstruction

time with m

• Impressive improvements for Run 2, but we need to go

much further 
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Pattern Recognition
● Use of the Kalman filter

formalism with weight matrix

● Identify possible next layers
from geometrical considerations

● Combinatorics with compatibles
hits, retain N best candidates

● No smoothing procedure

● Resilient to missing modules

● Hits are mostly belonging to one
track and one track only

● Hit sharing can happen in dense
events, in the innermost part

● Lots of hits from low momentum
particles



Data Analysis
• Objectives: 

• Searches (hypothesis testing): Likelihood Ratio Test (Neyman-Pearson lemma) 

• Measurements: Maximum Likelihood Estimate 

• Limits (confidence intervals): Also based on Likelihood 

• Likelihood

• n Independent Events (e) with Identically Distributed Observables ({x}) 

• Significant part of Data Analysis is approximating the likelihood as best as we 
can.

I N D E P E N D E N T  E V E N T S

•Make point that in HEP we consider our collisions during a given 
data taking period to be i.i.d. 

• so the likelihood is multiplicative across events, need to model 
distribution p(x|θ) for individual event 

• we often also have prediction for the expected number of events 
ν, which in general also depends on θ 

• we call this an extended likelihood, statisticians often call it a 
marked Poisson process  

• I will mainly ignore the Poisson part for this talk, but it can easily 
be added
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p({x}|✓) = Pois(n|⌫(✓))
nY

e=1

p(xe|✓)

L I K E L I H O O D  R AT I O S  F O R  H Y P O T H E S I S  T E S T I N G

5
⇒ Likelihood ratio leads to most powerful test
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Neyman-Pearson lemma



Standard Model / New Physics 
in Quantum Field Theory

Lepton/
Quark 4-vectors

Soft QCD: Quark Fragmentation 
and Hadronization

Particle 
4-vectors

Simulation: Particle 
Interactions with Detector 

Energy 
Deposits in Detector

Digitization: Detector 
Response and Pileup Mixing

Detector Response

Approximating the Likelihood
• Physics is all about establishing a very precise “model” of the underlying 

phenomena… so we can model our data very well. 

• Enables multi-step ab-initio simulations:  

1. Generation: Standard Model and New Physics are expressed in 
language of Quantum Field Theory. 

➡ Feynman Diagrams simplify perturbative prediction of HEP 
interactions among the most fundamental particles (leptons, quarks) 

2. Hadronization: Quarks turn to jets of particles via Quantum 
Chromodynamics (QCD) at energies where theory is too strong to 
compute perturbatively.  

➡ Use semi-empirical models tuned to Data. 

3. Simulation: Particles interact with the Detector via stochastic 
processes  

➡ Use detailed Monte Carlo integration over the “micro-physics” 

4. Digitization: Ultimately the energy deposits lead to electronic signals in 
the O(100 Million) channels of the detector. 

➡ Model using test beam data and calibrations. 

• Output is fed through same reconstruction as real data. 



Likelihood Approximations
• Need P({xe}|θ) of an observed event (e). The better we do, the more sensitive our measurements. 

• Steps 2 (Hadronization) and 3 (Simulation) can only be done in the forward mode… 

➡ cannot evaluate the likelihood.

• So we simulate a lot of events and use a Probability Density Estimator (PDE), e.g. a histogram.  

• {xe} = {100M Detector Channels} or even { particle 4-vectors } are too high dimension.  

• Instead we derive {xe} =  { small set of physics motivated observables } → Lose information. 

• Isolate signal dominating regions of {xe} → Lose Efficiency.  

• Sometimes use classifiers to further reduce dimensionality and improve significance 

• Profile the likelihood in 1 or 2 (ideally uncorrelated) observables. 

• Alternative, try to brute force calculate via Matrix Element Method: 

• But it’s technically difficult, computationally expensive, mistreats hadronization, and avoids 
simulation by highly simplifying the detector response. 

Mattelaer Olivier Data Science @LHC 2015 4

Weight Evaluation
P(pvis|�) = 1

⇥�

�
d�dx1dx2|M�(p)|2W (p,pvis)

Four Elements:

cross-section 

matrix-element 

transfer function 
 
 
 
 

integration

MadGraph5 

MadGraph5 

fitted from MC 
 
 
 

MadWeight

Computed via
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We demonstrate that recent developments in deep learn-
ing tools can overcome these failings, providing signifi-
cant boosts even without manual assistance.

RESULTS

The vast majority of particle collisions do not pro-
duce exotic particles. For example, though the Large
Hadron Collider produces approximately 1011 collisions
per hour, approximately 300 of these collisions result in
a Higgs boson, on average. Therefore, good data anal-
ysis depends on distinguishing collisions which produce
particles of interest (signal) from those producing other
particles (background).

Even when interesting particles are produced, detect-
ing them poses considerable challenges. They are too
small to be directly observed and decay almost immedi-
ately into other particles. Though new particles cannot
be directly observed, the lighter stable particles to which
they decay, called decay products, can be observed. Mul-
tiple layers of detectors surround the point of collision for
this purpose. As each decay product pass through these
detectors, it interacts with them in a way that allows its
direction and momentum to be measured.

Observable decay products include electrically-charged
leptons (electrons or muons, denoted `), and particle jets
(collimated streams of particles originating from quarks
or gluons, denoted j). In the case of jets we attempt
to distinguish between jets from heavy quarks (b) and
jets from gluons or low-mass quarks; jets consistent with
b-quarks receive a b-quark tag. For each object, the mo-
mentum is determined by three measurements: the mo-
mentum transverse to the beam direction (pT), and two
angles, ✓ (polar) and � (azimuthal). For convenience, at
hadron colliders, such as Tevatron and LHC, the pseu-

dorapidity, defined as ⌘ = � ln(tan(✓/2)) is used instead
of the polar angle ✓. Finally, an important quantity is
the amount of momentum carried away by the invisible
particles. This cannot be directly measured, but can be
inferred in the plane transverse to the beam by requiring
conservation of momentum. The initial state has zero
momentum transverse to the beam axis, therefore any
imbalance of transverse momentum (denoted 6ET ) in the
final state must be due to production of invisible particles
such as neutrinos (⌫) or exotic particles. The momentum
imbalance in the longitudinal direction along the beam
cannot be measured at hadron colliders, as the initial
state momentum of the quarks is not known.

Benchmark Case for Higgs Bosons (HIGGS)

The first benchmark classification task is to distinguish
between a signal process where new theoretical Higgs
bosons are produced, and a background process with the

b

b̄

W
Wg

g

H0

H±

h0

(a)

g

g

t

t̄

b

b̄

W+

W�

(b)

FIG. 1: Diagrams for Higgs benchmark. (a) Diagram de-
scribing the signal process involving new exotic Higgs bosons
H0 and H±. (b) Diagram describing the background process
involving top-quarks (t). In both cases, the resulting particles
are two W bosons and two b-quarks.

identical decay products but distinct kinematic features.
This benchmark task was recently considered by experi-
ments at the LHC [10] and the Tevatron colliders [11].

The signal process is the fusion of two gluons into a
heavy electrically-neutral Higgs boson (gg ! H0), which
decays to a heavy electrically-charged Higgs bosons (H±)
and a W boson. The H± boson subsequently decays to a
second W boson and the light Higgs boson, h0 which has
recently been observed by the ATLAS [12] and CMS [13]
experiments. The light Higgs boson decays predomi-
nantly to a pair of bottom quarks, giving the process:

gg ! H0 ! W⌥H± ! W⌥W±h0 ! W⌥W±bb̄, (1)

which leads to W⌥W±bb̄, see Figure 1. The background
process, which mimics W⌥W±bb̄ without the Higgs bo-
son intermediate state, is the production of a pair of top
quarks, each of which decay to Wb, also giving W⌥W±bb̄,
see Figure 1.

Simulated events are generated with the mad-
graph5 [14] event generator assuming 8 TeV collisions
of protons as at the latest run of the Large Hadron
Collider, with showering and hadronization performed
by pythia [15] and detector response simulated by
delphes [16]. For the benchmark case here, mH0 = 425
GeV and mH± = 325 GeV has been assumed.

We focus on the semi-leptonic decay mode, in which
one W boson decays to a lepton and neutrino (`⌫) and
the other decays to a pair of jets (jj), giving decay prod-
ucts `⌫b jjb. We consider events which satisfy the re-
quirements:
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TABLE I: Performance for Higgs benchmark. Com-
parison of the performance of several learning techniques:
boosted decision trees (BDT), shallow neural networks (NN),
and deep neural networks (DN) for three sets of input fea-
tures: low-level features, high-level features and the complete
set of features. Each neural network was trained five times
with di↵erent random initializations. The table displays the
mean Area Under the Curve (AUC) of the signal-rejection
curve in Figure 7, with standard deviations in parentheses as
well as the expected significance of a discovery (in units of
Gaussian �) for 100 signal events and 1000 ± 50 background
events.

AUC

Technique Low-level High-level Complete

BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01)

NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004)

DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)

Discovery significance

Technique Low-level High-level Complete

NN 2.5� 3.1� 3.7�

DN 4.9� 3.6� 5.0�

better understood than others, so that some simulated
background collisions have larger associated systematic
uncertainties than other collisions. This can transform
the problem into one of reinforcement learning, where
per-collision truth labels no longer indicate the ideal net-
work output target. This is beyond the scope of this
study, but see Refs. [22, 23] for stochastic optimizaton
strategies for such problems.

Figure 7 and Table I show the signal e�ciency and
background rejection for varying thresholds on the out-
put of the neural network (NN) or boosted decision tree
(BDT).

A shallow NN or BDT trained using only the low-level
features performs significantly worse than one trained
with only the high-level features. This implies that the
shallow NN and BDT are not succeeding in indepen-
dently discovering the discriminating power of the high-
level features. This is a well-known problem with shallow
learning methods, and motivates the calculation of high-
level features.

Methods trained with only the high-level features,
however, have a weaker performance than those trained
with the full suite of features, which suggests that despite
the insight represented by the high-level features, they do
not capture all of the information contained in the low-
level features. The deep learning techniques show nearly
equivalent performance using the low-level features and
the complete features, suggesting that they are automat-

ically discovering the insight contained in the high-level

features. Finally, the deep learning technique finds addi-
tional separation power beyond what is contained in the
high-level features, demonstrated by the superior perfor-
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FIG. 7: Performance for Higgs benchmark. For the
Higgs benchmark, comparison of background rejection versus
signal e�ciency for the traditional learning method (a) and
the deep learning method (b) using the low-level features, the
high-level features and the complete set of features.

mance of the deep network with low-level features to the
traditional network using high-level features. These re-
sults demonstrate the advantage to using deep learning
techniques for this type of problem.

The internal representation of a NN is notoriously dif-
ficult to reverse engineer. To gain some insight into the
mechanism by which the deep network (DN) is improving
upon the discrimination in the high-level physics features,
we compare the distribution of simulated events selected
by a minimum threshold on the NN or DN output, cho-
sen to give equivalent rejection of 90% of the background

Baldi, Sadowski,Whiteson 
arxiv:1402.4735
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Feature Learning
• Feature Engineering: e.g. Event Reconstruction ~ Feature Extraction, Pattern Recognition, Fitting, …  

• Deep Neutral Networks can Learn Features from raw data. 

• Example: Convolutional Neural Networks - Inspired by visual cortex 

• Input: Raw data… for example 1D = Audio, 2D = Images, 3D = Video 

• Convolutions ~ learned feature detectors 

• Feature Maps 

• Pooling - dimension reduction / invariance  

• Stack: Deeper layers recognize higher level concepts. 

• Over the past few years, CNNs have lead to exponential improvement / superhuman performance on Image 
classification challenges. Current best > 150 layers.  

• Obvious HEP application: “Imaging” Detectors such as TPCs, High Granularity Calorimeters, or Cherenkov Ring Imaging.



Neutrino Detectors
• Need large mass/volume to maximize chance of neutrino interaction. 

• Technologies: 

• Water/Oil Cherenkov 

• Segmented Scintillators 

• Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.

• Provides tracking, calorimetry, and ID all in same detector. 

• Chosen technology for US’s flagship LBNF/DUNE program.  

• Usually 2D read-out… 3D inferred. 

• Gas TPC: full 3D 

10

Principal of LArTPCPrincipal of LArTPC

LArTPCs make 3D reconstruction possible!

● wire planes give 2D position information
● the third dimension is obtained by combining timing information 
    with drift velocity (v

d
): x= v

d
(t-t

0
)  → hence, a “Time projection chamber”
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e/π0 Separation

• e/π0 separation can be achieved using topological and 
energy information.

- There is usually a gap between the photon conversion point 
and the neutrino interaction vertex.

- Electron and photon have different energy deposition profiles.

5

ArgoNeuT νe-CC candidate

2 π0’s

e/π0 Separation

• e/π0 separation can be achieved using topological and 
energy information.

- There is usually a gap between the photon conversion point 
and the neutrino interaction vertex.

- Electron and photon have different energy deposition profiles.
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Neutrino Physics

• 40% Better Electron Efficiency for same background.

http://arxiv.org/pdf/1604.01444.pdf

oscillation parameters via the disappearance of ⌫µ and appearance of ⌫e from neutrino oscillation.
NOvA consists of two functionally identical detectors in the NuMI (Neutrinos at the Main Injector)
beam [39] at Fermilab which produces a focused beam with an initial flavor composition largely
dominated by ⌫µ and a small intrinsic ⌫µ, ⌫e, and ⌫e components. Placing the detectors o↵-axis
at 14.6 mrad provides a narrow-band neutrino energy spectrum near 2 GeV. The Near Detector,
located at Fermilab, is placed 1 km from the neutrino source; the Far Detector is located 810 km
away near Ash River, Minnesota. The NOvA detectors are composed of extruded PVC cells filled
with liquid scintillator which segment the detector into cells with a cross section 3.9 cm wide ⇥
6.6 cm deep. The cells are 15.5 m long in the Far Detector. Scintillation light from charged particles
can be captured by a wavelength shifting fiber which runs through each cell. The end of the fiber is
exposed to a single pixel on an avalanche photo-diode array to record the intensity and arrival time
of photon signals. The spatial and absolute response of the detector to deposited light is calibrated
out using physical standard candles, such that a calibrated response can be derived which is a good
estimate of the true deposited energy. Parallel cells are arrayed into planes, which are configured in
alternating horizontal and vertical alignments to provide separate, interleaved X-Z, and Y-Z views.
The 14,000 ton Far Detector, which is used for the training and evaluation of CVN in this paper,
consists of 344,064 total channels arranged into 896 planes each 384 cells wide [6]. Information
from the two views can be merged to allow 3D event reconstruction. A schematic of the detector
design can be seen in Figure 2.

Figure 2. Schematic of the NOvA detector design
The two figures on the right show the views through the top and side of the three-dimensional figure
on the left. They show the ‘hits’ produced as charged particles pass through and deposit energy in
the scintillator-filled cells. Illustration courtesy of Fermilab.

Reconstruction of the neutrino energy and flavor state at the detector is essential to neutrino
oscillation measurements. The neutrino flavor state can be determined in charged-current (CC)

– 5 –

Figure 7. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
The top-most feature map for each event seems to be particularly sensitive to hadronic activity and
the bottom-most feature map seems to be sensitive to muon tracks. Shown are an example ⌫µ CC
DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction (bottom).
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reject cosmic backgrounds while retaining well-contained neutrino events inside the signal energy
window with high e�ciency. We quote our selection e�ciencies relative to true contained signal,
again matching the approach described in [52] for ⌫e and [53] for ⌫µ tests respectively.

Since the output of the final softmax layer in CVN is normalized to one, it can be loosely
interpreted as a probability of the input event falling in each of the thirteen training categories. For
the results presented in this paper a ⌫e CC classifier was derived from the sum of the four ⌫e CC
component probabilities. Similarly, the four ⌫µ CC components were summed to yield a ⌫µ CC
classification. Figure 9 shows the distribution of the CVN ⌫e CC classification parameter for true
⌫e CC events from ⌫µ ! ⌫e oscillation and the various NuMI beam backgrounds broken down
by type. Figure 10 shows the cumulative e�ciency, purity, and their product when selecting all
events above a particular CVN ⌫e CC classification parameter value. Excellent separation between
signal and background is achieved such that the only significant background remaining is that of
electron neutrinos present in the beam before oscillation; CVN does not attempt to di↵erentiate
between ⌫e CC events from ⌫µ ! ⌫e oscillation and those from ⌫e which are produced promptly
in the neutrino beam; these di↵er only in their energy distributions. Figures 9 and 10 also show
the performance of the CVN ⌫µ CC classification parameter. As with ⌫e, excellent separation is
achieved.

A common way to assess the performance of a signal selection is to compute a Figure of Merit
(FOM) given the number of selected signal events S and background events B. The FOM = S/

p
B

optimizes for a pure sample useful for establishing the presence of the signal S in the presence
of the background, while FOM = S/

p
S + B optimizes for an e�cient sample useful for making

parameter measurements with the signal S . Table 1 shows the e�ciency, purity, and event count
at the maximal point for both optimizations when using CVN to select ⌫e CC events, and Table 2
shows the same for ⌫µ CC events. Using CVN we were able to set selection criteria well optimized
for either FOM when searching for both surviving ⌫µ and appearing ⌫e events.

CVN Selection Value ⌫e sig Tot bkg NC ⌫µ CC Beam ⌫e Signal E�ciency Purity
Contained Events � 88.4 509.0 344.8 132.1 32.1 � 14.8%

s/
p

b opt 0.94 43.4 6.7 2.1 0.4 4.3 49.1% 86.6%
s/
p

s + b opt 0.72 58.8 18.6 10.3 2.1 6.1 66.4% 76.0%

Table 1. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of appearing electron neutrino CC
interactions. E�ciency is shown here relative to the true contained signal. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

CVN Selection Value ⌫µ sig Tot bkg NC Appeared ⌫e Beam ⌫e Signal E�ciency Purity
Contained Events � 355.5 1269.8 1099.7 135.7 34.4 � 21.9%

s/
p

b opt 0.99 61.8 0.1 0.1 0.0 0.0 17.4% 99.9%
s/
p

s + b opt 0.45 206.8 7.6 6.8 0.7 0.1 58.2% 96.4%

Table 2. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of surviving muon neutrino CC in-
teractions. E�ciency here is shown here relative to the pre selected sample. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

Perhaps the most important way to assess the performance of the CVN classification param-

– 14 –

reject cosmic backgrounds while retaining well-contained neutrino events inside the signal energy
window with high e�ciency. We quote our selection e�ciencies relative to true contained signal,
again matching the approach described in [52] for ⌫e and [53] for ⌫µ tests respectively.

Since the output of the final softmax layer in CVN is normalized to one, it can be loosely
interpreted as a probability of the input event falling in each of the thirteen training categories. For
the results presented in this paper a ⌫e CC classifier was derived from the sum of the four ⌫e CC
component probabilities. Similarly, the four ⌫µ CC components were summed to yield a ⌫µ CC
classification. Figure 9 shows the distribution of the CVN ⌫e CC classification parameter for true
⌫e CC events from ⌫µ ! ⌫e oscillation and the various NuMI beam backgrounds broken down
by type. Figure 10 shows the cumulative e�ciency, purity, and their product when selecting all
events above a particular CVN ⌫e CC classification parameter value. Excellent separation between
signal and background is achieved such that the only significant background remaining is that of
electron neutrinos present in the beam before oscillation; CVN does not attempt to di↵erentiate
between ⌫e CC events from ⌫µ ! ⌫e oscillation and those from ⌫e which are produced promptly
in the neutrino beam; these di↵er only in their energy distributions. Figures 9 and 10 also show
the performance of the CVN ⌫µ CC classification parameter. As with ⌫e, excellent separation is
achieved.

A common way to assess the performance of a signal selection is to compute a Figure of Merit
(FOM) given the number of selected signal events S and background events B. The FOM = S/

p
B

optimizes for a pure sample useful for establishing the presence of the signal S in the presence
of the background, while FOM = S/

p
S + B optimizes for an e�cient sample useful for making

parameter measurements with the signal S . Table 1 shows the e�ciency, purity, and event count
at the maximal point for both optimizations when using CVN to select ⌫e CC events, and Table 2
shows the same for ⌫µ CC events. Using CVN we were able to set selection criteria well optimized
for either FOM when searching for both surviving ⌫µ and appearing ⌫e events.

CVN Selection Value ⌫e sig Tot bkg NC ⌫µ CC Beam ⌫e Signal E�ciency Purity
Contained Events � 88.4 509.0 344.8 132.1 32.1 � 14.8%

s/
p

b opt 0.94 43.4 6.7 2.1 0.4 4.3 49.1% 86.6%
s/
p

s + b opt 0.72 58.8 18.6 10.3 2.1 6.1 66.4% 76.0%

Table 1. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of appearing electron neutrino CC
interactions. E�ciency is shown here relative to the true contained signal. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

CVN Selection Value ⌫µ sig Tot bkg NC Appeared ⌫e Beam ⌫e Signal E�ciency Purity
Contained Events � 355.5 1269.8 1099.7 135.7 34.4 � 21.9%

s/
p

b opt 0.99 61.8 0.1 0.1 0.0 0.0 17.4% 99.9%
s/
p

s + b opt 0.45 206.8 7.6 6.8 0.7 0.1 58.2% 96.4%

Table 2. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of surviving muon neutrino CC in-
teractions. E�ciency here is shown here relative to the pre selected sample. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

Perhaps the most important way to assess the performance of the CVN classification param-

– 14 –

Hadronic 
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Map

Muon 
Feature 

Map
Muon Neutrino 

DIS CC

Muon Neutrino 
QE CC

Muon Neutrino 
NC

• Core Physics requires just measuring neutrino flavor and energy. 

• Generally clean (low multiplicity) and high granularity.   

• First HEP CNN application: Nova using Siamese Inception CNN.

http://arxiv.org/pdf/1604.01444.pdf
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π+ κ+ μ+ e+ γ

DNN 74.42% 40.67% 6.37% 0.12% 0%
LArIAT
Analysi

74.5% 68.8% 88.4% 6.8% 2.4%

π– κ- μ- e- γ

DNN 78.68% 54.47% 13.54% 0.11% 0.25%
LArIAT
Analysi

78.7% 73.4% 91.0% 7.5% 2.4%

LArIAT: 
DNN vs Alg



NEXT Experiment
• Neutrinoless Double Beta Decay using Gas 

TPC/SiPMs 

• Signal: 2 Electrons. Bkg: 1 Electron. 

• Hard to distinguish due to multiple scattering. 

• 3D readout… candidate for 3D Conv Nets. 

• Just a handful of signal events will lead to 
noble prize 

• Can we trust a DNN at this level?
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Why high pressure gas?

• Topological reconstruction:!

• ßß events in Xe gas at 15 bar are twisted tracks of ~10 cm length with high 
energy deposits at either end. 

• Single electrons from natural radioactivity will only have a high energy 
deposit at one end.
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Figure 1. Monte-Carlo simulation of a 136Xe bb0n event in xenon gas at 10 bar: the ionization track, about
30 cm long, is tortuous because of multiple scattering, and has larger depositions or blobs in both ends.

Figure 2. The Separate, Optimized Functions (SOFT) concept in the NEXT experiment: EL light generated
at the anode is recorded in the photosensor plane right behind it and used for tracking; it is also recorded in
the photosensor plane behind the transparent cathode and used for a precise energy measurement.

3.1 Development of the NEXT project: R&D and prototypes

During the last three years, the NEXT R&D program has focused in the construction, commission-
ing and operation of three prototypes:

• NEXT-DBDM,shown in figure 3. This is an electroluminescent TPC equipped with a compact
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NEXT Detector Optimization
• Idea 1: use DNNs to optimize detector. 

• Simulate data at different resolutions 

• Use DNN to quickly/easily assess best performance for given resolution.

Examples of simulated events
• Simulated signal (below) and background (above) events: 2x2x2 mm voxels

• Simulated signal (below) and background (above) events: 10x10x5 mm voxels

Examples of simulated events

Table 3. Summary of DNN analysis for different Monte Carlo datasets. The accuracy was com-
puted assuming that the classification of the DNN corresponded to the category (signal or back-
ground) with the higher (> 50%) probability. In each case, approximately 15000 signal and 15000
background events were used in the training procedure, and between 2000-3000 signal and 2000-3000
background events independent of the training set were used to determine the accuracy.

2x2x2 voxels Run description Avg. accuracy (%)
Toy MC, ideal 99.8

Toy MC, realistic 0⌫�� distribution 98.9
Xe box GEANT4, no secondaries, no E-fluctuations 98.3

Xe box GEANT4, no secondaries, no E-fluctuations, no brem. 98.3
Toy MC, realistic 0⌫�� distribution, double multiple scattering 97.8

Xe box GEANT4, no secondaries 94.6
Xe box GEANT4, no E-fluctuations 93.0

Xe box, no brem. 92.4
Xe box, all physics 92.1

NEXT-100 GEANT4 91.6
10x10x5 voxels

NEXT-100 GEANT4 84.5

at the ends of the tracks produced by energetic electrons. The production of secondaries
coupled with energy fluctuations in energy deposition seems to be the principle cause of
accuracy loss in the DNN analysis. Future studies geared toward developing a DNN targeted
on the problem at hand, and attempting to extract information on what characteristics of
the tracks it is “learning,” would lead to a more complete understanding of the possibilities
and limitations of a DNN-based analysis.
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be chosen for determining whether an event is classified as signal or background. It can be
simply chosen as 50%, meaning the category with greatest probability is the classification
of the event, or it can be varied to reject further background at the expense of signal
efficiency. Figure 8 shows the corresponding pairs of signal efficiency and background
rejection produced by variation of this threshold, while for the values reported in table
2 the threshold was chosen such that the signal efficiency matched that reported in the
conventional analysis. Note that to optimize the sensitivity to 0⌫�� decay, one would seek
to maximize the ratio of signal events detected divided by the square root of background
events accepted (see [14]). Thus we define a figure of merit F = n

s

/

p
n

b

, where s and b are
the fractions of signal and background events accepted. This quantity is shown alongside
the plot of signal efficiency vs. background rejection in Fig. 8. In table 2 we reported
the values of background rejection corresponding to the signal efficiencies studied in the
classical analysis, though these did not optimize the figure of merit. For optimal figures
of merit, we would have signal efficiency of 69.0% (62.5%) and background acceptance of
2.5% (5.8%) for 2x2x2 mm3 (10x10x5 mm3) voxels.

Figure 8. Signal efficiency vs. background rejection for DNN analysis of voxelized (2x2x2 and
10x10x5 cubic mm), single-track NEXT-100 Monte Carlo events. The figure of merit F to be
maximized in an optimal 0⌫�� search is also shown as a function of background rejection.

6.2 Evaluating the DNN analysis

We now ask what is causing some significant fraction of the events to be misclassified in
the analysis described in section 6.1. To address this, a similar analysis was run on several
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6 Event classification with a DNN

Here we investigate the performance of a DNN in classifying events into two categories,
“signal” and “background,” and compare the results to the conventional analysis described in
section 4.2. We chose to use the GoogLeNet DNN for this initial study, as its implementation
was readily available in the Caffe [12] deep learning framework along with an interface,
DIGITS [4], which allows for fast creation of image datasets and facilitates their input to
several DNN models. In order to generate large numbers of events with which to train
the DNN, an alternate GEANT-based Monte Carlo, which we call the “xenon box” (Xe
box) Monte Carlo, was run in which the NEXT-100 detector geometry was not present,
and background events (single electrons) and signal events (two electrons emitted from a
common vertex with a realistic 0⌫�� energy distribution) were generated in a large box
of pure xenon gas at 15 bar. These events were then subject to the same voxelization
procedure and single-track cut as described in section 2.1.

For two different configurations of voxel size, GoogLeNet was trained on 202400 Xe box
input events using one or more NVidia GeForce GPUs. Each event was input to the net as
a .png image consisting of three color (RGB) channels, one for each of three projections of
the 3D voxelized track, (R, G, B) ! (xy, yz, xz). This information for a signal event and
a background event was shown earlier for different voxelizations in Fig. 4 and Fig. 5.

6.1 Analysis of NEXT-100 Monte Carlo

To compare the ability of the DNN to classify events directly with the performance of the
topological analysis of section 4.2, we consider NEXT-100 Monte Carlo events that have
passed the pre-selection cuts described in 4.1, with chosen voxel sizes of both 2 x 2 x 2 mm3

and 10 x 10 x 5 mm3. For each chosen voxel size, Monte Carlo events that were subject to
the standard “blob cuts” of the classical analysis were classified by the corresponding DNN
trained using Xe box events. Note that the background events used in this comparison
were those produced by the 214 Bi decay. The results are shown in table 2. The DNN
analysis performs better than the conventional analysis, but there is still potential room for
improvement.

Table 2. Comparison of conventional and DNN-based analyses. The comparison shows, for a given
percentage of signal events correctly classified, the number of background (214Bi) events accepted
(mistakenly classified as signal).

Analysis Signal eff. (%) B.G. accepted (%)
DNN analysis (2 x 2 x 2 voxels) 86.2 4.7

Conventional analysis (2 x 2 x 2 voxels) 86.2 7.6
DNN analysis (10 x 10 x 5 voxels) 76.6 9.4

Conventional analysis (10 x 10 x 5 voxels) 76.6 11.0

Because the output layer of the DNN gives a probability that a given event is signal
and a probability that it is background, and these probabilities add to 1, a threshold may
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• Idea 2: systematically study the relative importance of various physics/detector effects. 

• Start with simplified simulation. Use DNN to assess performance. 

• Turn on effects one-by-one.



Semi-supervised Learning
• Basic idea: Train network to reproduce the input.  

• Example: Auto-encoders 

• De-noising auto-encoders: add noise to input only. 

• Sparse auto-encoders:  

• Sparse latent (code) representation can be exploited for 
Compression, Clustering, Similarity testing, …  

• Anomaly Detection

• Reconstruction Error 

• Outliers in latent space 

• Transfer Learning

• Small labeled training sample?  

• Train auto-encoder on large unlabeled dataset (e.g. data). 

• Train in latent space on small labeled data. (e.g. rare 
signal MC). 

• Easily think of a dozen applications.



Learning Representations
• Example: Daya Bay Experiment (Evan Racah, et al) 

• Input: 8 x 24 PMT unrolled cylinder. Real Data (no simulation)  

• 2 Studies: 

• Supervised CNN Classifier

• Labels from standard analysis:  Prompt/Delayed Inverse Beta Decay, 
Muon, Flasher, Other. 

• Convolutional Auto-encoder (semi-supervised) 

• Clearly separates muon and IBD delay without any physics knowledge. 

• Potentially could have ID’ed problematic data (e.g. flashers) much earlier.

7

(a) Example of an “IBD delay” event (b) Example of an “IBD prompt” event

Fig. 5: Raw event image (top row) and convolutional autoencoder reconstructed event image (bottom row).
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(a) An IBD delay event in cluster A (b) An IBD prompt event in cluster A

(c) An IBD delay event in cluster C (d) An IBD prompt event in the blue cluster below the letter B

Fig. 3: Representative examples of various IBD events in Figure 2. Clusters in Figure 2 where each event appears called out
by letter

Fig. 2: t-SNE reduction of representation learned on the last
fully connected layer of CNN

supervised convolutional neural network. Figure 2 shows the t-
SNE visualization of the outputs from the last fully connected
layer of the CNN. This visualization shows in two dimensions
how the each example is clustered in the 26-dimensional
feature space learned by the network.

We also show, in Figures 3a and 3b, example PMT charges
of different types of events that are in clusters in the t-SNE
clustering (Figure 2) that contain a mix of labels near each
other, as well as examples contained in well separated clusters
in Figures 3c and 3d.

2) Interpretation: Our results suggest that there are patterns
in the Daya Bay data that can be uncovered by machine
learning techniques without knowledge of underlying physics.
Specifically, we were able to achieve high accuracy on classi-
fication of the Daya Bay events using only the spatial pattern
of the charge deposits. In contrast, the physicists used the
time of the events and prior physics knowledge to perform
classification. In addition, our results suggest that deep neural
networks were better than other techniques at classifying
the images and thus finding patterns in the data. As shown
in Table II, our CNN architecture had the highest F1-score
and accuracy for all event types. In particular, it showed
significantly higher performance on classes “IBD prompt” and
“flasher”. Not only did the supervised CNN perform better in
classifying the data then other shallower ML techniques, such
as KNN and SVM’s, but it also discovered features in the data
that helped cluster it into fairly distinct groups as shown in
Figure 2.

We can further investigate the raw images within the clusters
formed by t-SNE. For example, in Figures 3a and 3b the
CNN has identified a particularly distinctive charge pattern
common to both images. These are labelled as different
types because prompt events have a large range of charge
patterns, some of which very closely resemble delay events.
The standard physics analysis is able to resolve these only
by using the time coincidence of delay events happening
within 200 microseconds after prompt events, while the neural
network solely has charge pattern information. Figures 3c and
3d, on the other hand, show images from more distinct prompt
and delay clusters, respectively, illustrating that prompt events
deposit less energy in the detector on average.

t-SNE reduction of 26-dim 
representation of the last fully connected 
layer.
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Such clustering suggests that, with help from ground truth
labelling, deep learning techniques can discover informative
features and thus find structure in raw physics inputs. Because
such patterns in the data exist and can be learned, this suggests
that unsupervised learning also has the potential to discover
these patterns without needing ground truth labeling, so we
turn to that analysis in the next section.

B. Unsupervised learning with Convolutional Autoencoder

1) Results: For the convolutional autoencoder, we present
the t-SNE visualization of the 10 features learned by the
network in figure 4. To show how informative the feature
vector that the network learned is, we also show several
event images and their reconstruction by the autoencoder in
Figures 5a and 5b. More informative features that are learned
correspond to more accurate reconstructions because the 10
features effectively give the network the “ingredients” it needs
to the reconstruct the input 8x24 structure.

2) Interpretation: The convolutional autoencoder is de-
signed to reconstruct PMT images and so it learns different
features than the supervised CNN which is attempting to
classify based on the training labels. Therefore, the t-SNE
clustering for this part of the study (in Figure 4) is quite
distinct to that in the supervised section. Nevertheless we
were able to obtain well defined clusters without using any
physics knowledge or training. Specifically there is a very
clearly separated cluster that can be identified with the labelled
muons, and also a fairly clear separation between “IBD delay”
and other events. We even achieve some separation between
“IBD prompt” and “other” backgrounds which, as mentioned
above, is mainly achieved in the default physics analysis only
by incorporating additional information of the time between
prompt and delayed events.

By looking at the reconstructed images, we can see the au-
toencoder was able to filter out the input noise and reconstruct
the important shape of different event types. For example, in
Figure 5a, the shape of the charge pattern is reconstructed
extremely accurately, which shows that the 10 learned features
from the autoencoder are very informative for “IBD delay”
events. In Figure 5b, salient and distinct aspects of the more
challenging “IBD prompt” events are also reconstructed fairly
well.

As further work, it would be desirable to obtain better
separation between “flasher” and “other” events. Therefore
we intend to continue to tailor the convolutional autoencoder
approach to this application by considering input transforma-
tions that take into account the experiment geometry, variable
resolution images, and alternative construction of convolu-
tional filters, as well as more input data and full parameter
optimization of the number of filters and the size of the feature
vector.

VIII. CONCLUSIONS

In this work we have applied for the first time unsupervised
deep neural nets within particle physics and have shown
that the network can successfully identify patterns of physics
interest. As future work we are collaborating with physicists

Fig. 4: t-SNE representation of features learned by convolu-
tional autoencoder

on the experiment to investigate in detail the various clusters
formed by the representation to determine what interesting
physics is captured in them beyond the initial labelling. We
also plan to incorporate such visualizations into the monitoring
pipeline of the experiment and as part of other work [26] have
applied the autoencoder at scale to a large part of the entire
Daya Bay dataset (2.7 billion events).

Such unsupervised techniques could be utilized in a generic
manner for a wide variety of particle physics experiments
and run directly on the raw data pipeline to aid in trigger
(filter) decisions or in evaluating data quality, or to dis-
cover new instrument anomalies (such as flasher events). The
use of unsupervised learning to identify such features is of
considerable interest within the field as it can potentially
save considerable time required to hand-engineer features to
identify such anomalies.

We have also demonstrated the superiority of convolutional
neural networks compared to other supervised machine learn-
ing approaches for running directly on raw particle physics
instrument data. This offers the potential for use as fast selec-
tion filters, particularly for other particle physics experiments
that have many more channels and approach exabytes of
raw data such as those at the current Large Hadron Collider
(LHC) and planned HL-LHC at CERN [27]. Our analysis
in this paper used the labels determined from an existing
physics analysis and therefore the selection accuracy is upper
bounded by that of the physics analysis. Many other particle
physics experiments, however, have reliable simulated data
which could be used with the approaches in this paper to
better the selection accuracy achieved with those experiments’
current analyses.

In conclusion, we have demonstrated how deep learning can
be applied to reveal physics directly from raw instrument data
even with unsupervised approaches, and therefore that these
techniques offer considerable potential to aid the fundamental
discoveries of future particle physics experiments.

t-SNE reduction of 10 parameter latent 
representation.

http://arxiv.org/pdf/1601.07621v1.pdf
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• That means that any oscillation analysis can benefit from 
precise identification of the interaction in two ways: 
• Estimating the lepton flavor of the incoming neutrino. 
• Correctly identifying the type of neutrino interaction, to 

better estimate the neutrino energy, aka is it a quasi 
elastic event or a resonance event? 

Quasi-Elastic Resonance
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• Our detectors are also often the perfect domain: 
• Large ~uniform volumes where spatially invariant 

response is a benefit.  
• Usually only one or two detector systems. 
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Why Convolutional Neural 
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t-SNE Representation of Test 
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The Bottom Line
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However our CNN achieves 73% efficiency and 76% purity on 
νe selection at the                optimized cut.  
Equivalent to 30% more exposure with the old PIDs.
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After oscillations, cosmic rejection cuts, data quality cuts:
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Generative Models
• Likelihood Approximation relies simulation

• Most computationally expensive step, so any speedup has huge impact. 

• More generally, simulation based on data would be a powerful tool. 

• For example, we can build a Hadronization model purely from data. 

• DNNs Generative Models enable building simulations purely from examples. 

• Generative Adversarial Nets (Goodfellow, et. al. arxiv:1406.2661). 
Simultaneously train 2 Networks:  

• Discriminator (D) that tries to distinguish output and real examples. 

• Generator (G) that generate the output that is difficult to distinguish. 

• Variational Auto-encoders:  

• Learn a latent variable probabilistic model of the input dataset.  

• Sample latent space and use decoder to generate data. 

• Particle showering is slowest part of the micro-physics simulation…  

• Various techniques for fast showering (e.g. shower template libraries) are 
common. 

• DNN Generative Models are being pursued inside the experiments (K. 
Cranmer, G. Louppe, …) for this task…

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)
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60Timing

Generation Method Hardware Batch Size milliseconds/shower
GEANT4 CPU N/A 1772

1 13.1
10 5.11
128 2.19

CPU

1024 2.03
1 14.5
4 3.68
128 0.021
512 0.014

CALOGAN

GPU

1024 0.012

Table 2: Total expected time (in milliseconds) required to generate a single shower under
various algorithm-hardware combinations.
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See also S. Vallecorsa et al. (GeantV), C. Guthrie et al. (NYU), 
W. Wei et al. (LCD dataset group), D. Salamani et al. (Geneva), 

D. Rousseau et al. (Orsay), L. de Oliveira et al. (Berkeley)

M. Paganini et al., 1705.02355



YaleShower Shapes
Check: does the LAGAN recover the true data distribution as 

projected onto a set of meaningful 1D manifolds?
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How do we “see” particles?
• Particles deposit their energy in a stochastic process know as 

“showering”, secondary particles, that in turn also shower. 

• Number of secondary particles ~ Energy of initial particle.  

• Energy resolution improves with energy: σ(E) / E = a/√E ⊕ b/E ⊕ c.  

• a = sampling, b = noise, c = leakage.   

• Density and Shape of shower characteristic of type of particle. 

• Electromagnetic calorimeter: Low Z medium  

• Light particles: electrons, photons, π
0
 →γγ interact with electrons 

in medium 

• Hadronic calorimeters: High Z medium 

• Heavy particles: Hadrons (particles with quarks, e.g. charged 
pions/protons, neutrons, or jets of such particles) 

• Punch through low Z.  

• Produce secondaries through strong interactions with the 
nucleus in medium. 

• Unlike EM interactions, not all energy is observed. 
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ATLAS Calorimeter
• Ideally suited for “imaging” ~ 64 x 36 x 7 3D Image 

• 200K Calorimeter cells measure energy deposits. 

• Interesting Challenges: non-uniform granularity, 
cylindrical geometry. 

• High impact:  

• Improve Identification and energy resolution make 
the peaks stand out. 

• Turn DNN into generative model for fast shower 
simulation. 

• High potential: we don’t use all information so room for 
improvement 

• e/gamma: take full advantage of the high granularity 
and accordion structure 

• hadronic calibration: take full advantage of 
longitudinal sampling and other handles  

• particle flow: correlate with tracks (and vertex) for 
hadronic calibration, taus, jet-tagging, boosted 
objects…  

• Problem: Private Data…



Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit
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Calorimeter Dataset
• CLIC is a proposed CERN project for a linear accelerator of 

electrons and positrons to TeV energies (~ LHC for protons) 

• LCD is a detector concept. 

• Not a real experiment yet, so we could simulate data and make 
it public.  

• The LCD calorimeter is an array of absorber material and silicon 
sensors comprising the most granular calorimeter design available  

• Data is essentially a 3D image 

• With at effective eta/phi resolution of 0.003x0.003, we can down 
sample to get ~ ATLAS granularity: 0.025x0.1 (pre-sampler) to 
0.2x0.1 Tile D. 

• Data: 1 million single e, γ, π
+/-

, π
0
. 10-500 GeV of energy.

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 
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Abstract

We present studies of the application of Deep Neural Networks and Convolutional
Neural Networks for the classification, energy regression, and simulation of parti-
cles produced in high-energy particle collisions.We train cell-based Neural Nets
that provide significant improvement in performance for particle classification and
energy regression compared to feature-based Neural Nets and Boosted Decision
Trees, and Generative Adversarial Networks that provide reasonable modeling of
several but not all shower features.

1 Overview

In High Energy Physics (HEP) experiments, detectors serve as cameras that take pictures of the
products of particle collisions. One of the key components of such detectors are calorimeters that
image the energy depositions of the showers of secondary particles produced by high energy particles
from these collisions interacting with dense detector material. The resulting patterns of depositions,
which are characteristic of the particle type, are observed in "cells" analogous to voxels (possibly with
irregular shapes) in three-dimensional (3D) images. Physicists, as a first step towards discovering or
studying interesting phenomena or new particles, typically use features extracted by sophisticated
reconstruction algorithms to identify the type and estimate the energy of particles in large samples of
collision events. Machine Learning (ML) techniques are well suited for such tasks, and indeed ML
has long played an essential role in HEP, including the 2012 Nobel Prize-winning discovery of the
Higgs boson [1, 2] at the ATLAS [3] and CMS [4] experiments at the Large Hadron Collider (LHC).

In the next decade, the High Luminosity Large Hadron Collider (HL-LHC) upgrade of the current
LHC will enhance the sensitivity to new physics by increasing the proton-proton collision rate. In
addition, many next generation detectors, such as the sampling calorimeters proposed for the ILC [5]
and CLIC [6], will improve the ability to identify and characterize particles produced in collisions
using highly granular 3D arrays of pixels. These upgrades and future accelerators will lead to higher
data volumes and a variety of technological challenges, e.g. real-time particle reconstruction and
fast detector simulation. In addition, physics measurements typically require extremely detailed and
precise simulation, relying on the well understood micro-physics governing the interaction of particles
with matter coded into software packages, the most notable being Geant4 [7]. These simulations are

Workshop on Deep Learning for Physical Sciences (DLPS 2017), NIPS 2017, Long Beach, CA, USA.



1. e/γ Particle Identification (Classification)
• Photon/lepton ID requires factor ~10000 jet rejection
• Jet like photon/lepton classification tasks:

• Task 1: Electrons vs Electromagnetic π+/- (HCAL/ECAL Energy < 0.025)
• Task 2: Photons vs Merging π0 (2γ opening angel < 0.01 rad)

• Comparison:
• Feature based BDT and DNN 
• Cell-based DNN (fully connected). 

• Significant Improvement with cell-based DNNs.
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Figure 1: Signal vs. background efficiency ROC curves for the (left) � vs. ⇡0 and (right) e vs. ⇡
classifier. The red dots mark the chosen BDT working point.

1000 model BDT hyperparameter scan yielded best performance with 400 estimators, maximum
depth of 5, and learning rate of 0.5.

The features we computed are commonly used in calorimetry to characterize the particle shower
shape and energy deposit. These features are: total energy deposited in ECAL, total number of hits
in ECAL, the ratio of energy in ECAL first layer over energy in second layer, the ratio of energy in
ECAL first layer over all ECAL energy, second through sixth moments in the detector local x, y, and
z of ECAL energy deposits, all equivalent features for HCAL, ratio of HCAL to ECAL energy, and
ratio of number of hits in HCAL to ECAL. In our studies, we found that the most powerful features
are the second x and y moments that measure the lateral shower width.

� vs. ⇡0
e vs. ⇡

Model acc. AUC �✏sig �Rbkg acc. AUC �✏sig �Rbkg

BDT 83.1% 89.8% - - 93.8% 98.0% - -
DNN (features) 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
DNN (cells) 87.2% 93.5% 9.4% 1.63 99.4% 99.9% 4.9% 151

Table 1: Performance parameters for BDT and DNN classifiers.

Figure 1 shows the ROC curves for the three classifiers and Table 1 quantifies the performance.
The areas under curve (AUC) and accuracies (acc.) for the cell-based DNNs are significantly
better than the feature-based DNNs and BDTs, which have similar performance. We also quantify
the achievable improvements in signal and background efficiency from the DNNs with respect
to the chosen “working point” on the BDT ROC curve indicated in Figure 1. For the � vs. ⇡

0

(e vs. ⇡

±) classifier, the cell-based DNN may be used to either increase the signal efficiency by
�✏sig = ✏

DNN
sig � ✏

BDT
sig = 9.4% (4.9%) for fixed background efficiency, or decrease the background

efficiency by a factor �Rbkg = ✏

BDT
bkg /✏

DNN
bkg = 1.6 (151) for fixed signal efficiency.

3 Regression: Energy Reconstruction

We trained a separate dedicated DNN to estimate particle energies from their calorimeter deposits.
This DNN is composed of two CNNs for ECAL and HCAL, followed by a flattening and concatenation
layer, with a final densely connected layer. The ECAL branch uses a 3-feature convolutional layer
with a 4⇥ 4⇥ 4 window and stride of 1 in each direction, followed by a 2⇥ 2⇥ 2 max pooling layer
with a stride of 2. The HCAL branch has a 10-feature layer with a 2⇥ 2⇥ 6 window and stride of 1,
followed by a 2⇥ 2⇥ 2 max pooling layer with a stride of 2. All convolutional layers have ReLU
activation. The output of both branches are linearized and merged, followed by a fully connected
layer with 1000 neurons. The final neuron has a linear activation function and the mean-squared error
(MSE) is used as the loss function. The data sample was split into 40,000 events for training, 10,000
events for validation, and 30,000 events for testing.

As a baseline measure of the energy, we use a simple bi-linear regression of the summed energy in
ECAL and HCAL to the true energy. Figure 2 compares the energy dependence of the calorimeter
resolution for each particle type and for both the neural net and the simple linear regression models.
Table 2 quantifies the results by fitting this dependence to the expected form. We observe significantly
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2. Energy Calibration (Regression)
• Energy resolution improves with energy: 

• σ(E) / E = a/√E ⊕ b/E ⊕ c. 

• a = sampling, b = noise, c = leakage.  
• Comparison:

• Simple calibration: Sum energies (no noise) and scale. 
• CNN calibration: Cells → Particle energy

• Significant Improvement with CNN

Figure 2: Energy resolution for
photons, electrons, neutral and
charged pions compared for the
CNN vs. linear model.

Simple Linear Model
Particle Type a b c

Photons 55.5 1.85 1245
Electrons 42.3 1.51 1037

Neutral pions 55.3 1.71 1222
Charged pions 442 25 11706

CNN Model
Particle Type a b c

Photons 18.3 0.75 131
Electrons 18.7 0.574 111

Neutral pions 19.3 0.45 231
Charged pions 114 1.02 893

Table 2: Calorimeter resolution parameters from
equation �(�E)

Etrue
=

ap
Etrue

� b � c
Etrue

for the reso-
lution curves in Fig. 2.

better performance from the DNN as compared to the simple model, with resolution enhancement of
a factor of 3.5–7 at low energies and 2–4 at high energies, for all four particle types.

4 Generative Model: Particle Simulation

We use the sample of ECAL 3D energy arrays to demonstrate the ability to simulate particles at given
energies using GANs, as a proof of concept for a much larger plan to integrate a generic deep-learning
tool for fast simulation into the GeantV detector simulation library [19].

Both the GAN generator and discriminator models consist of four 3D convolution layers with leaky
ReLU activation functions. The number and sizes of filters were tuned to optimize the description of
the transverse and longitudinal shower shapes. The discriminator models take the calorimeter image
as input and produce two outputs: classification of the images as real or generated and regression
of the energy, in the manner described in the previous section. The generator takes as input the
desired particle energy and a latent noise vector initialized to a uniform probability distribution, and
outputs a 25⇥ 25⇥ 25 ECAL image. The results of GAN-simulated particles are shown in Fig 3, in
comparison with the particles generated via GEANT4 [7]. The GAN provides reasonable modeling
of the longitudinal shower width but further tuning is required to model the transverse shower width.

5 Conclusion and Future Work

This paper shows how deep learning techniques could outperform traditional and resource-consuming
techniques in tasks typical of physics experiments at particle colliders, such as particle identification,
energy measurement, and detector simulation. To continue this work, we will push forward particle
classification and energy regression into new areas, using multi-particle events with overlapping

Figure 3: Comparison of (left) transverse shower width and (right) longitudinal shower width for
GAN vs. Geant simulation of electrons with energies of 200-300 GeV.
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3. Simulation (Generative Model)
• Physics measurements typically require extremely detailed and precise 

simulation,

• Software packages (e.g. Geant4) simulated the well understood micro-
physics governing the interaction of particles with matter.

• Generally very CPU intensive 

• Example: ATLAS experiment uses half of the experiment’s computing 
resources for simulation. 

• Task: CNN GAN conditioned on particle energy
• Accelerate simulation by many orders of magnitude.

• Promising start… but not yet faithfully reproducing all commonly used 
features extracted from generated images.
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CNN vs. linear model.
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J E T  S U B S T R U C T U R E

•Many scenarios for physics Beyond the Standard Model 
include highly boosted W, Z, H bosons or top quarks  

•Identifying these rests on subtle substructure inside jets 

• an enormous number of theoretical effort in developing 
observables and techniques to tag jets like this 

5

2

b Rbb Rfilt

Rbbg

b
R

mass drop filter

FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgs
neighbourhood within it by undoing the clustering (effectively shrinking the jet radius) until the jet splits into two subjets
each with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardest
subjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,
updates the set of distances and repeats the procedure
until all objects are separated by a ∆Rij > R, where R
is a parameter of the algorithm. It provides a hierarchical
structure for the clustering, like the K⊥algorithm [9, 10],
but in angles rather than in relative transverse momenta
(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, we
then use the following new iterative decomposition proce-
dure to search for a generic boosted heavy-particle decay.
It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its last
stage of clustering. Label the two subjets j1, j2 such
that mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <
µmj, and the splitting is not too asymmetric, y =
min(p2

tj1
,p2

tj2
)

m2

j

∆R2
j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.
Note that y ≃ min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go back
to step 1.

The final jet j is to be considered as the candidate Higgs
boson if both j1 and j2 have b tags. One can then identify
Rbb̄ with ∆Rj1j2 . The effective size of jet j will thus be
just sufficient to contain the QCD radiation from the
Higgs decay, which, because of angular ordering [12, 13,
14], will almost entirely be emitted in the two angular
cones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-
pendently of the Higgs mass and pT . Taking µ ! 1/

√
3

ensures that if, in its rest frame, the Higgs decays to a
Mercedes bb̄g configuration, then it will still trigger the
mass drop condition (we actually take µ = 0.67). The cut
on y ≃ min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-
metric configurations that most commonly generate sig-
nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, that
used to calculate the splitting scale in [5, 6], which takes the jet
pT as the reference scale rather than the jet mass.

Jet definition σS/fb σB/fb S/
√

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K⊥, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets background
in the leptonic Z channel for 200 < pTZ/GeV < 600 and
110 < mJ/GeV < 125, with perfect b-tagging; shown for
our jet definition, and other standard ones at near optimal R
values.

soft gluon divergence. It can be shown that the maxi-
mum S/

√
B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ≃ 0.15. Since we
have mixed tagged and mistagged backgrounds, we use a
slightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimal
for LHC at the transverse momenta of interest, pT ∼
200 − 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT is
still quite large and the resulting Higgs mass peak is sub-
ject to significant degradation from the underlying event
(UE), which scales as R4

bb̄
[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. This
involves resolving it on a finer angular scale, Rfilt < Rbb̄,
and taking the three hardest objects (subjets) that ap-
pear — thus one captures the dominant O (αs) radiation
from the Higgs decay, while eliminating much of the UE
contamination. We find Rfilt = min(0.3, Rbb̄/2) to be
rather effective. We also require the two hardest of the
subjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-
lustrate its effectiveness by showing in table I (a) the
cross section for identified Higgs decays in HZ produc-
tion, with mh = 115 GeV and a reconstructed mass re-
quired to be in an moderately narrow (but experimen-
tally realistic) mass window, and (b) the cross section
for background Zbb̄ events in the same mass window.
Our results (C/A MD-F) are compared to those for the
K⊥algorithm with the same ycut and the SISCone [16]
algorithm based just on the jet mass. The K⊥algorithm
does well on background rejection, but suffers in mass
resolution, leading to a low signal; SISCone takes in less
UE so gives good resolution on the signal, however, be-
cause it ignores the underlying substructure, fares poorly
on background rejection. C/A MD-F performs well both
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Up next: jet imagesW bosons are naturally boosted if they result 
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Searching for new particles 
decaying into boosted W 

bosons requires looking at the 
radiation pattern inside jets

momentum transverse 
to the beam (pT)



Why images?
Can directly visualize physics
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there is information encoded in the 
physical distance between pixels

g ⇢ qq

W ⇢ qq

and we can benefit from the 
extensive image processing literature

_

_



Pre-processing & spacetime symmetries
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Can help to learn faster & smarter; but must be careful!

One of the first typical steps is pre-processing



Modern Deep NN’s for Classification
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…what the DNN 
is learning is 
active R&D!

Boosted W boson 
versus quark/gluon jet

mass, t21, DR 
are all simple 
functions of 
the image
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See also  

L. Almeida et al. 1501.05968
Baldi et al. 1603.09349 

J. Barnard et al. 1609.00607
P. Komiske et al. 1612.01551

G. Kasieczka et al. 1701.08784  
W. Bhimji et al. 1711.03573



F R O M  I M A G E S  T O  S E N T E N C E S

•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!

33

Analogy: 
word → particle 
parsing → jet algorithm
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S

36

towers 

particles

images

• W-jet tagging example  
using data from Dawe, et 
al arXiv:1609.00607 

• down-sampling by 
projecting into images 
looses information 

• RNN needs much less 
data to train!

kt anti-kt
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Abstract

Supervised learning has incredible potential for particle physics, and one appli-
cation that has received a great deal of attention involves collimated sprays of
particles called jets. Recent progress for jet physics has leveraged machine learning
techniques based on computer vision and natural language processing. In this work,
we consider message passing on a graph where the nodes are the particles in a
jet. We design variants of a message-passing neural network (MPNN); (1) with a
learnable adjacency matrix, (2) with a learnable symmetric adjacency matrix, and
(3) with a set2set aggregated hidden state and MPNN with an identity adjacency
matrix. We compare these against the previously proposed recursive neural network
with a fixed tree structure and show that the MPNN with a learnable adjacency
matrix and two message-passing iterations outperforms all the others.

1 Introduction

Several physics goals for the Large Hadron Collider (LHC) are inextricably linked to the treatment of
collimated sprays of energetic hadrons referred to as ‘jets’. There are a number of tasks encountered
in jet physics including classification and regression associated to the progenitor particle(s) giving
rise to the jet. For instance, a jet may result from a quark, gluon, W -boson, top-quark, or Higgs
boson. Several Beyond the Standard Model (BSM) theories involve new particles and interactions
that predict specific jet signatures, but testing these theories is challenging because jets from more
mundane processes occur much more frequently. Often sensitivity to these BSM theories requires
classifiers with true positive rates of O(1) and false positive rates of O(10�2). There has been
an enormous amount of effort from both the theoretical and experimental communities to develop
techniques for jet physics [1].

Recent progress in applying machine learning techniques for jet physics has been built upon an
analogy between calorimeters and images [2–9]. These methods take a variable-length set of 4-
momenta and project them into a fixed grid of ⌘ � � towers or ‘pixels’ to produce a ‘jet image’.

More recently, recursive neural networks have been applied to this classification problem based on
an analogy between QCD and natural languages [10]. Much like a sentence is composed of words
following a syntactic structure organized as a parse tree, a jet is also composed of particles following

⇤Corresponding authors

Workshop on Deep Learning for Physical Sciences (DLPS 2017), NIPS 2017, Long Beach, CA, USA.



Table 1: Summary of classification performance for several approaches.

Network Iterations ROC AUC R✏=50%

RecNN-kt (without gating) [10] 1 0.9185± 0.0006 68.3± 1.8
RecNN-kt (with gating) [10] 1 0.9195± 0.0009 74.3± 2.4
RecNN-desc-pT (without gating) [10] 1 0.9189 ± 0.0009 70.4 ± 3.6
RecNN-desc-pT (with gating) [10] 1 0.9212 ± 0.0005 83.3 ± 3.1
RelNet 1 0.9161± 0.0029 67.69± 6.80

MPNN (directed) 1 0.9196± 0.0015 89.35± 3.54
MPNN (directed) 2 0.9223± 0.0008 98.26± 4.28

MPNN (directed) 3 0.9188± 0.0031 85.93± 8.50

MPNN (undirected) 1 0.9193± 0.0015 86.41± 3.80
MPNN (undirected) 2 0.8949± 0.1004 97.27± 5.02

MPNN (undirected) 3 0.9185± 0.0036 84.53± 8.64

MPNN (set, directed) 1 0.9189± 0.0017 88.23± 4.53
MPNN (set, directed) 2 0.9191± 0.0046 87.46± 14.14
MPNN (set, directed) 3 0.9176± 0.0049 88.33± 9.84

MPNN (set, undirected) 1 0.9196± 0.0014 85.65± 4.48
MPNN (set, undirected) 2 0.9220± 0.0007 94.70± 2.95

MPNN (set, undirected) 3 0.9158± 0.0054 75.94± 12.54

MPNN (id) 1 0.9169± 0.0013 74.75± 2.65
MPNN (id) 2 0.9162± 0.0020 74.41± 3.50
MPNN (id) 3 0.9158± 0.0029 74.51± 5.20

class, which we denote ’W jets’, arises from W bosons decaying into two quarks leading a single
“fat jet” with characteristic substructure. Specifically, we use particle-level input used in Ref. [10] and
compare with the results using the best performing RNN based on a simple descending pT ordering
and the binary tree defiend by the kt jet algorithm (↵ = 1). We use background rejection (i.e., 1/FPR)
at 50% signal efficiency, which we denote R✏=50%, for early stopping. For each model architecture
considered, we train models with different initialization and follow the same prescription as Ref. [10]
to provide a robust estimate of the mean and standard deviation by excluding outliers. We note the
standard error on the mean is roughly five times smaller than the standard deviation.

Table 1 compares the results of various approaches using the same test data as Ref. [10]. The MPNN
with a learned adjacency matrix and two iterations of message passing achieves the best performance
in terms of both ROC AUC and R✏=50%. The directed graph slightly outperforms the undirected
graph, though not significantly. The learned adjacency matrix outperforms the identity, confirming
the fact that pairwise particle interactions need to be taken into account. Our experiments indicate that
adding message passing iterations does not monotonically increase the performance. We attribute this
fact to the learning instability, evidenced by the increased variance, caused by the increased number
of parameters, suggesting that better regularization techniques may be necessary in the future to
stabilize learning and further improve the performance. We also notice that the set variants generally
underperform. Although more in-depth analysis is necessary to make any firm conclusion, currently
the aggregated hidden state seems to act more as noise than useful signal in the MPNN iteration.

4 Conclusions

With these initial results we conclude that the MPNNs are a powerful model for jet physics. Similar
to recursive neural networks, they can operate on a variable number of particles and do not require
any discretization into a fixed-length input or image-like pre-processing. In addition, the graph repre-
sentation allows for information between all particles to be exchanged, where such communication is
restricted to a tree structure in the recursive approach. We have observed that the model configuration
influences the final result, thus care must be taken when designing the MPNN.

4

➔ Making your data into an image isn’t always the best idea. 



Final Remarks
• Deep Learning can help get the most out of a given accelerator, detector, and data set. 

• Deep Learning can help design better experiments. 

• Deep Learning may help address HEP problems: 

• US’s flagship project, DUNE, and other LArTPC experiments need help with automatic 
reconstruction. They are ideally suited for DNNs. 

• Computing for HL-LHC will be prohibitively expensive unless we find some clever 
techniques. 

• Over the past couple of years many DL solutions have been demonstrated, often with toys…  

• Over the next few years: 

• Bring them into our experiments and make them realistic 

• Target physics measurements where DL can have significant impact   

• Move DL to production and make DL mainstream 

• Deep Learning will fundamentally change how scientific computing is done…



Semi-supervised Learning
• Basic idea: Train network to reproduce the input.  

• Example: Auto-encoders 

• De-noising auto-encoders: add noise to input only. 

• Sparse auto-encoders:  

• Sparse latent (code) representation can be exploited for 
Compression, Clustering, Similarity testing, …  

• Anomaly Detection

• Reconstruction Error 

• Outliers in latent space 

• Transfer Learning

• Small labeled training sample?  

• Train auto-encoder on large unlabeled dataset (e.g. data). 

• Train in latent space on small labeled data. (e.g. rare 
signal MC). 

• Easily think of a dozen applications.



(a) Azimuth (pose) (b) Elevation

(c) Lighting (d) Wide or Narrow

Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from �1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally in (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

https://arxiv.org/pdf/1606.03657.pdf

https://arxiv.org/pdf/1606.03657.pdf
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• Each node combines 4-momentum in (E-
scheme recombination of ok) and a non-linear 
transformation of hidden state of children hkL, 
hkR ∈ ℝ⁴⁰ 

• Recursively applied (shared weights, Markov) 

• “gating” allows for weighting of information of 
L/R children and for to flow directly along one 
branch

kt
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Appendix A: Gated recursive jet embedding

The recursive activation proposed in Sec. III A su↵ers
from two critical issues. First, it assumes that left-child,
right-child and local node information h

jet
kL

, hjet
kR

, uk are
all equally relevant for computing the new activation,
while only some of this information may be needed and
selected. Second, it forces information to pass through
several levels of non-linearities and does not allow to
propagate unchanged from leaves to root. Addressing
these issues and generalizing from [12–14], we recursively
define a recursive activation equipped with reset and up-
date gates as follows:

h
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where Wh̃ 2 Rq⇥3q, bh̃ 2 Rq, Wz 2 Rq⇥4q, bz 2 Rq,
Wr 2 Rq⇥3q, br 2 Rq, Wu 2 Rq⇥4 and bu 2 Rq form
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•Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot 
(arXiv:1702.00748) 

• Use sequential recombination jet algorithms to 
provide network topology (on a per-jet basis) 

• path towards ML models with good physics properties 

• Top node of recursive network provides a fixed-length 
embedding of a jet that can be fed to a classifier

kt anti-kt



Exciting New Directions

So far only scratches the surface
…this is a very active field of research!
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D E E P  L E A R N I N G  V S .  T H E O R Y

•While the DNN shows a significant improvement with 
respect to the jet mass combined with single theory 
inspired variable (eg. τ₂₁, D₂), only a small improvement with 
respect to a BDT using several theory-inspired variables
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FIG. 4: Signal e�ciency versus background rejection (inverse
of e�ciency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal e�ciency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with ⌧21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on

the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.
While one cannot probe the motivation of the ML al-

gorithm, it is possible to compare distributions of events
categorized as signal-like by the di↵erent algorithms in
order to understand how the classification is being accom-
plished. To compare distributions between di↵erent algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher e�ciency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.

DISCUSSION

The signal from massive W ! qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly e�cient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly di�cult as the accuracy of the classifier increases.
Physicists have spent significant time and e↵ort de-

signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup e↵ects), they
cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.
Our experiments support two conclusions. First, that

machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-

•Other Problems: 

• image-based approach not 
easily generalized to non-
uniform calorimeters 

• not easy to extend to tracks, 
projecting into towers looses 
information 

• theory inspired variables work on 
set of 4-vectors & have 
important theoretical properties

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Barnard, et al arXiv:1609.00607
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One of the most useful physics-
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