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Learning With a Teacher

(supervised learning)

Input space
X c R

Sampling ﬂ

Input training
Patterns
Input feature vectors):
Representative
instances x_i € X
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Unknown mapping:
f(X)=Y
(model, behavior)
generalized

-

\-

\
Learner

Produces the mapping

fX)=Y ~ Y

Many iterations ...

Output space
Y « Rm

|

A R
Y_i S Output training
J Patterns (labels) %
|:> i(Output feature vectors): :
: Representative
“ instances of y_i e Y
“gorresponding to x_i.’

good learning ...

error= d(y_i,y_i)

Adjust model parameters to decrease error
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Learning Without a Teacher
(unsupervised learning)

/ L ut trainixg
Input training earner
patterns: |:>
Representative
instances x_i € X

An unsupervised (self-organized) learner
captures some internal characteristics of the
data space (data manifold): structure, mixing
components / latent variables, ...

o EXx: clusters

e Ex: principal components

e EX: independent components
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Phases of the Full Learning Process
Unsupervised + Supervised

1.

Phase 1 allows
e New discovery

N

e Detection of mislabeled “known” samples, or missed class
Prevent confusion of supervised learner -> poor learning results

3.
Input training 4 . )
Representative Supervised
instances x_i e X |:> Learni ng
(classification)
- Y
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2. ﬂlabeling

Output training
patterns:
Representative
instances of y_i € Y
corresponding to x_i



Feature Vector (Data Point) in n-Space

Input to a learning algorithm

Vector of descriptors for an object of interest in physical space: x € R™

Ex: Descriptors for a galaxy

Image — unfolded to a vector of pixel values

Vector of derived statistics: mean brightness, width, eccentricity, RGB color
values, ...

Spectrum
Combinations

Ex: Descriptors for a dark matter / dark energy phenomenon - ?

The choice of descriptors is important: must characterize the objects from
the point of view of the problem!

Objects close in physical (problem) space may not be close in feature space —
and vica versa

Careful with using image (spatial) context — can help; or can lose important
discovery of small size in physical space

C R N
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Choice of Feature Vector

© B
O

Om

categorization better
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Feature vector: (R,G,B) =>

os()

C1

Feature vector: (“roundness”, radius) =>

o
O

Feature vector: (R,G,B,“curvature”, radius) =>

This matches our intuitive @
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Finding Clusters of Rare Materials on Mars

Data: VIS-NIR Spectral Imagery, Imager for Mars Pathfinder; Colors: clusters

IMP S0184 left eye
~ 600,000 pixels

28 SOM clusters
40 x 40 SOM
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Unsupervised Learning
(an incomplete view)

In general, seeks to model the structure of data space from unlabeled data:
estimation / identification of the distribution

= Finding the (relative) concentration(s) of data points — and topology
=  Summarize & explain the key features / relationships in the data

Complexity is the major challenge!

Data sets with same feature dimensionality (n=2), same # of points (N)
but with increasing structural complexity pose different level of challenge for
identifying the structure

right left
eye eye

nose

mouth

“Clown”
(Vesanto & Alhoniemi,

IEEE TNN, 2000)

Simple Simple multimodal
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Complex (Complicated) Data Space

—_—

Challenges Imagine in 100 dimensions!
"  High dimensionality Highly sfructured data space

= Large volume
= Multi-modal (has clusters)
= Highly structured

= Not linearly separable
= Widely varying shapes and sizes

= ... densities (vary within and
across clusters)

= ... proximities

= ... local dimensionalities

No statistical models

To faithfully learn data relations, and to keep Merényi, Tasdemir, Zhang, Springer, LNAI 5400. 2009
discovery potential, no (or least) assumption
should be made about the structure.

Let the data speak.

Ex: K-means is tuned to capture spherical / ellipsoidal clusters. Can’t capture irregulars.
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Unsupervised Learning
(an incomplete view)

Major approaches

= (Kernel) density estimation / mixture modeling

m Latent variable models such as PCA, ICA, SVD factorization (BSS)
= Anomaly detection ( really, any of the others)

= Cluster analysis < | Concentrate on this

Various overlaps and correspondences exist across these categories.
T. Heskes, IEEE TNN 2001: links between mixture modeling, VQ and SOM

Discovery potential vs algorithm constraints

Constraints increase, interpretability increases >

< Discovery potential decreases

,‘\‘\% E. Merényi, Rice U . .
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Unsupervised Learning
(an incomplete view)

Density estimation with mixtures of Gaussians

= Density estimation / mixture

o=1.0
modeling
= Model the data with a weighted sum
of functions (linear) \

s Predefined functional form X

s Predefined # of functions

= EM often used for determining the
parameters of fit (parameters of the
functions and mixing weights)

i
]

" A _ i Figure from Hastie et al, 2008
= = i 1
e =5 Relation to clustering: Mixture
S © § 10 15 X 25 components can be viewed as clusters.
alue
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Unsupervised Learning
(an incomplete view)

QD

Latent variable models Structure seen by ICA but not by PCA

= Also mixtures of “components”, which
represent clusters (classes)

= Components are not predefined functions,
derived from data, along with mixing weights

= #of components predefined =

= Mostly linear mixtures
= Non-linear extensions exist but difficult

T l1s -1a -5 0 5 10 15

PCA: Finds uncorrelated (lin. Independent)
components -> limited to znd order stats Cocktail Party problem — unmixing unknown

sources
= vast literature, widely available code @ s1(t)
= SVD: More general version of PCA ‘ W

. o _ mike 1
ICA: Finds statistically independent

components — uses higher order statistics s3(t
-> finds more interesting structure T s2(t) T
Different approaches (information theor,,

. mike 2

mike 3
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Clustering
(somewhat arbitrary, biased)

= Goal: To partition the data space into ) )
. (<]
segments (clusters) such that points .’ ° :’
within a cluster are closer to one Good Bad
another than to any point in any of ° oo
(<]
the other clusters. °.° ° . °

= Measure of clustering quality without labeled data: assesses how well the
clusters match the natural partitions (chicken — egg?)
= Function of some distortion or intrinsic data relation within and across
clusters; depends on the measure of similarity / dissimilarity metric used
= Metrics often distance-based (similarity = proximity, dissimilarity = distance)
s  Other measures can be used, which are not distances in mathematical sense

o Ex: Kullback-Leibler divergence; Connectivity measure
= Frequently used: cluster validity index (CVI)
= Review of CVI-s in Bezdek & Pal, 1998; Tasdemir & Merényi, 2011
= Others: Entropy, modularity, Gap statistic
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Cluster Validity Indices (CVI)

= Most CVI-s measure the ratio of separation
between clusters and scatter within clusters (aka
between clusters and within-cluster distance).

m  Separation and scatter are often calculated from
distances

= Between-cluster distance metrics
o Centroid linkage
o Complete linkage
o Single linkage

a ...

= Within-cluster distance metrics:
o Average distance to cluster centroid, dw_cent
o Maximum distance between any pair, dw_max

o Maximum of nearest neighbor distances
dw_nn_max

o more ...
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Approaches to Index Construction
Classic measures: GDI, DBl — misjudge complex clusterings

= minimum separation/
maximum scatter

= Ex: GDI B
d, :(C.,C)
GDI(U) = min{ min: b—'d : (ct | o
I<s<c | I<t<c | max i
ts klgkgc{ W_JAk }, ,

= average of (scatter/separation) |

= Ex: DBI (Davies & Bouldin, 1979) N

...................................... D
DBIU) :L C max dW_Cent (Ck)+dw_cent Cn)
| C| kel 1=k db_cent (Ck ,Cy ) E U
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Newer Measures For Separation and Scatter

New indices defined by the distances (of data) and the
data distribution.

= Ex: CDbw (Composite Density between and within clusters)
(Halkidi, Vazirgiannis, 2002)

CDbw(c) = Intra _dens(c)- Sep(c).c= 1

A B
1 &1L density (v,)
Intra _dens (c) = =) — —,
co o stdev
s i=l _Ai=l
o =T Sep(c) = —— r>1
s, ) M,
density (v, ) => f(x,.v;).
Uj =1
_ ) < < (d(clos_rep,.clos_rep.) |
e representatives (prototypes) Inter _den. )
O midpoint of the closest prototypes 0. if d{h V.. j -~ stdev
stdev: average standard deviation of clusters f ( .1 ) — —1
stdev_i: standard deviation of cluster i =

1. otherwise

X.U.. )=1 N
/% E. Merényi, Rice U j ( v ; ' otherwise
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Performance of CVI-s

= Performance of a CVI (whether it is effective measuring the clustering quality)
depends on its construction, and on the complexity of the clusters

= Usually good judgment for simple structures; misleading index values for
complicated structures — still much work to do

s Tasdemir & Merényi, 2011 evaluate several CVI-s including some more recent
ones
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Clustering Approaches

= “Mode finding (or bump hunting): find multiple convex regions [of the input
space X] that contain modes of Pr(X).

= This can show if Pr(X) can be expressed by a mixture of simpler density models
each representing a distinct type of observations.

= Find a smaller set of latent variables (the modes)

= Can get difficult /intractable in higher dimensions

=  Combinatorial methods find optimum partitioning wrt some goal function

= Work directly on the observed data points (do not use probability models)
= Each data point assigned to one cluster (many-to-one encoding)
= Predefined # of clusters, K

= BUT: for N data points and K clusters, the # of possible partitionings (cluster
assignments) S(N,K) quickly explodes

K "
Ex: N=10, K=4 => 5(10,4) = 34,105 S(N.K) = ! P (I\> N
Ex: N=19, K=4 => $(19,4) = 10710 !! Il e k
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Hierarchical Clustering

Builds a binary tree where each node is a cluster; the children of a node are
subclusters

=  Work directly on the observed data points (do not use probability models); Assign
each data point (n-dim sample) to one cluster

= The tree can be built by agglomerative (bottom-up) method, successively merging
the two closest clusters

= or by divisive (top-down) method, successively splitting clusters by some quality
criterion (e.g., a CVI)

= # of clusters, K, is NOT predefined, but obtained by cutting the resulting tree
(dendrogram), by a quality criterion

= NEGATIVE: can be computationally intense (works with pair wise (cluster)
similarities; or with CVls involving the former)

= POSITIVE: Model-free, any similarity measure can be plugged in; Can capture
irregular clusters, and a large number of clusters

= BEWARE: The choice of cluster similarity / distance or partitioning quality measure
greatly influences the outcome

R T
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Outcomes of Clustering the Same Data
With Different Similarity Measures

Average Linkage Complete Linkage Single Linkage

Dendrograms, showing the stages of the clustering. Each was built using a

different cluster similarity metric, indicated at the top of the panels.
(Figure from Hastie et al., 2008)
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Prototype Based Clustering Approaches

Alleviate computational burden: compute distances to a smaller number of
prototypes (not between all pairs of data points); this is VQ, coarse grained

= K-means: iteratively adjusts initial cluster centers (Linde, Buzo, Gray, 1980)
=  Computationally inexpensive

s Kis predefined; optimal # of clusters must be determined by charting a
partitioning quality measure (such as a CVI) as a function of K

= Gap measure (Tibshirani et al, 2001: average within-cluster scatter compared to
same of uniform distribution; the ideal K is where the “gap” is maximum. The gap
ignores the between-clusters distances!

=  Model-free but favors spherical clusters (each prototype is center of one
cluster — implicitly assumes spherical clusters)

= Very sensitive to the initial choice of cluster centers
=  Experience: works well for simple data; but not for high-D, complex data
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Learn the data structure with Self-Organizing Maps
Machine learning analog of biological neural maps in the brain

- Two simultaneous actions:
SOM lattice
Input buffer - Adaptive Vector Quantization

(VQ): puts the prototypes in the
“right” locations => allows )
summarization of N data vectors by
O(sqrt(N)) prototypes; while
encoding salient properties

- Ordering of the prototypes on the
SOM grid according to similarities;
only SOMs do this.

Input vector x (spectrum)

l.e., SOM learns the structure (the
distribution) AND expresses the
topology (similarity relations) on a
low-dimensional lattice.

Data

space
M < R"

Finding the prototype groups: post-
processing — segmentation of the
SOM based on representations of

Q) Sy imserisea UG SOM'S knowledge




Toy example: unsupervised SOM learning of 4 Gaussian clusters
Evolution of prototypes, and visualization

Cannot be shown
for >2-D

SOM prototypes
(black dots)
in data space

Can be shown
for >2-D

SOM knowledge
visualized,
based on all features

<\ )
mU-matrix

representation

-
F & &
- —
- .
representation
-

5.8 E. Merényi, Rice U
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Graph representation of SOM knowledge:

.........
........
o .

Induced Delaunay graph (SR e
e SR : left
Well-learned SOM prototypes (black vertices), nicely follow ~ rigfit-" ' i et
the data distribution. eye “‘.‘.‘-_-‘-_; ........
: mouth

Placement of prototypes is crucial! (Assume correct learning.) & T

\ 2-D “Clown” data

7= (Data: Vesanto and Alhoniemi, 2000)

e S oy "P-‘.‘_fr |
P S S YA
DN AV,

Delaunay
graph

Martinetz and Schulten, 1994:

* Theinduced Delaunay graph

/ // 4 perfectly represents topology - but
| T NS it in high- 5
i%*‘f"‘“‘f‘?b!‘ N}ﬂ@!‘g! how to get it in high-D space-

" ﬁ"f’ﬁ.‘}/n'/  Competitive Hebbian learning

A, “”'“ﬁg’ (neural maps) produces the
%W;‘“[v/ induced Delaunay graph (with one
}A‘{\V&‘""“F/ Iy///c&l Delaunay | mild condition)

- LA graph
w.&"lv o To get it: Connect two prototypes if

d
(Figures from Tasdemir and Merényi, 2009) they are closest and 2"? closest

@& E;Z'\s/':l;(;?(g;i?;_csdﬂ Unsupervised Learning, DMML 2018 match fdr a data vector
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Connectivity (CONN) similarity measure and graph

(Tasdemir & Merényi, IEEE TNN 2009)

Induced
Delaunay
graph

- binary

%‘ E. Merényi, Rice U
'&%‘ erzsebet@rice.edu

2-d data

(Vesanto &
Alhoniemi »
IEEE TNN 2000) SV

Adjacency

Connectivity

Unsupervised Learning, DMML 2018

CONN graph:
Weighted
induced
Delaunay
graph
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Connectivity (CONN) similarity measure and graph

(Tasdemir & Merényi, IEEE TNN 2009)

Cannot be shown
for data dim > 2

Can be shown
For data dim >2

Bonus: CONN
shows topology
violations

nose
left eye" .y pOuth .
3 R VAN
L) A — :
U-matrix ( X|| w; —w;|| ) CONNectivity matrix draped
overlain the SOM grid over SOM grid: The SOM /
Figure adapted from Vesanto & CONN portrait of the Clown

TR o Alhoniemi IEEE TNN 2000
\ E. Merényi, Rice U . .
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SOM vs K-means: Spectral Statistics of Clusters
Data: Ocean C|ty, 200-band Hyperspectral Image of Urban Area

D

| [t L RALE LALE LALE RAN | | I | | I S il Il B | | | | Il | | Il | | I | [ ]
whed Tennis court Ik
0.049 ~— ‘ |' N
n 0.0s2
W(J SOM
35 clusters i i
0084 Many unique D_DEW
nnszw 4 (Verlﬁed) D . D
o0 w - W ° spectral types, Doss e .05 A v
oos e “tight clusters”
s e .~ lilac bldg 0, oo Ay, ]
5 S 003% - § g
% 0 0sa """ ‘ M'H"—P"J ©
K-means does poorly — great confu5|on of clusters
E Z m F
I 0.043
0.068 WH ’ - ' U-UGSW s i |
i ] 014 | h * D‘ - DD
: M K \pd K_means " ’ 1,06 [mmm——r————]
. water tower _’_'Lj_hj
21 clusters . ‘ []
m | o Interesting i D 1T ]
oeer . clusters not o= _
-Lad 013
0.055m " discovered; DDS_,—-»-\,.! \.ﬁ‘_‘
00 large variance Il '
D.DE% o
bbbl L, T TN P P P of clusters 0028 L unaz/‘_‘u
" Wavstength (m) " Wavelengih (um) " Wavelengih (um) NN N b'a'v'\;g & l;'gméwn}; 58
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Example: ALMA hyperspectral image — spectral variations

Image planes from ALMA Band 7, protoplanetary disk HD 142527

GHz 329 299-329. 305 330.555 - 330. 564 342 850-342. 856

Cluster the spectral
signatures to map
regions of distinct
kinematic and

Continuum compositional
f [4 f I H
Image i
Ch 1 50 51 120 121 170 g behavior.
170 channels: C80, 13CO, CS lines stacked
Spectral resolution: 0.122 M C180 13c0O CS
Sample emission spectra [\A —pixel (113.113)
[ pixel (124.148) [
" ) pixel (117,126) |
[\ oy \ — % |12'H3E)| i
pixel (119,136)
£ | I\ l 2 \ ——pixel (113,120) | |
[ *pixal (135,132)
i I HivEa
> | ||
— nog |_ : Al
3 \ I\ TINAN! A
oa s & N )
® 0.01 - A - '
(o} h 1 11 21 31 41 51 &1 71 81 91 101 111 121 131 141 151 161
% Channel #
% ALMA spectra from combined C*80, 13CO, CS lines, showing
=== differences in composition, Doppler shift, temperature
\ E. Merényi, RiceU =—Fri——
@ erzsebet@rice.edu

Unsupervised Learning, DMML 2016Data credit: JVO, project 2011.0.00318.5)
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NeuroScope structure discovery from ALMA data
HD 142527 protoplanetary disk (data: Isella 2015)

C'80
NeuroScope cluster map from stacked

T

C!80, 13CO lines, 100 + 100 channels as Moment 17 |
input feature vectors |

The emerging structure of the protoplanetary disk .
based on all channels of two molecular tracers,
visualized in one 2-D view

Coloring of clusters is arbitrary,

not a heat map!
(Merényi, Taylor, Isella, Proc. IAU 325, 2016)

% E. Merényi, Rice U . .
N erzsebet@rice.edu Unsupervised Learning, DMML 2018

29

(8/wy)



Clusters found in HD142527
Data: ALMA image cube of HD142527 (lIsella, 2015)

C180 13CO
w Mean cluster signatures alert to interesting areas.

L C180 13CO

]
]
]
]
]
I
“ I
I
1
: N
! 0.175
]
;
: 0.125
1

Channel number 0.075

0.025

-0.025

0 20 40 60 80 100 120 140 160 180 200

Two distinct peaks, shifted opposite from
rest frequency. Two gas components moving
in different directions.

V

Channel number Channel number

More discovery within one molecular line (Merényi, Taylor, Iselia, Proc. IAU 325, 2016)

% ¢ verenyi, Rice U More discovery from the combination of lines
@ erzsebet@llfice.edu Unsupervised Learning, DMML 2018 30



Our Approach To Structure Discovery

Step 1: Learn the data manifold with SOMs - easy,
reliable, little tuning needed, automatic, unsupervised.
= Use all input features — keep the discovery potential

= No assumption except lose upper limit of potential
clusters (to allocate enough SOM prototypes)

= Use Conscience SOM (CSOM) for maximum entropy
learning (best matching of the data distribution)

Step 2: cluster the SOM prototypes — can be hard

= Need good knowledge representation, sensitive
similarity measure, like the CONN graph, and
visualization. ;S &

= Interactive cluster extraction (based on recipe) is best l—u !
so far. DOES NOT SCALE. .

= We look to modern graph-segmentation methods ...

CSOM / CONN portrait of
the ALMA cube of HD142527 ,,

‘f,‘\ﬁ\*‘ E. Merényi, Rice U . .
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Clustering By Graph-Segmentation

Community Finding

= Works with a pair wise adjacency (proximity)
matrix A of the data as edges in a graph where
nodes represent data points

= Cut the graph “optimally”. Ex:

= Spectral partitioning — cut the graph Laplacian
matrix, L, to minimize the cut size, subject to
equal-size partitions (!)

(From Newman, 2006)

Cut size = # edges across different clusters; can be o
expressed as a weighted sum of eigenvalues of L. A = { I If vertices i, j connected
ij
Optimization assigns large weights to terms with 0
small(est) eigenvalue under norm. constraint. 2 A,,. i=]degree of vertex
= Cut by (2", approximate) “leading eigenvector” o=l ‘
of the modularity matrix B (devisive); ® -1 i #jand|, j connected
optimizes a modularity function based on B . 0
Works better than spectral partitioning. B;i=A;;—P,.
= Fast & Greedy — ag-glomera-\tlve, also optimizes P, Probability of edge (i)
the same modularity function 7 i 3 “null-model”

;‘Z B3 Merényi, Rice U ) _
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Clustering By Graph-Segmentation

Community Finding

= Cut the graph “optimally”. Ex: (cont’d)

=  Walktrap — uses random walk to derive a
similarity measure based on the distribution
of destination states of vertices i and j, after t
steps. Then uses this measure in
agglomerative hierarchical clustering.

Does not use the modularity criterion for tree
building, but uses to evaluate afterwards

= Infomap —also based on random walk, but
forms an entropy-based cost function from
the within- and between-clusters transitions.

= Many more ... review in Fortunato (2010)

= Available in the 1graph package, 0to 2
parameters — good for automation

(From Pons and Latapy, 2006)

Notice that the peaks of the modularity
(goal) function Q indicate that relevant

= N data points => O(N”2) edges partitionings may exist on multiple scales.
= 1000 x 1000 px image => 10712 edges!!!

 "§ E. Merényi, Rice U . .
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Automation For Segmentation of the SOM
Graph-segmentation informed by SOM and CONN

s © Graph-cutting methods: automatic, only 1 or 2 parameters, some have none *

s ® Can’t deal with many data points. N vectors => N2 edges. For this small ALMA
image (56,000 vectors), over 109 edges !!!

m © © Use the intelligently summarized data (SOM prototypes) as input

s © © © Plus CONN similarity measure (Merényi, Taylor, Isella, Proc. IAU 325, 2016)
ALMA data cube Graph-cutting alg "
Prohibitively large
N = 56,000 » using Euclidean time demyandg > 777
N A2=2.5*10"9 distance
SOM prototypes Gra?ph—cutt.mg alg Ve e
of ALMA cube » using Euclidean |—— e 1l semand)
N=400, N*2=16,000 distance
SO]!VI prototyt;))es ‘ Grz.:\ph—cuttcl:r(m)gN?\Ilg | Very fast
of ALMA cube - using our — (< 1 second)
N=400, N*2=16,000 measure
Qg E;)s“:gi?g;i?;?:dﬂ Unsupervised Learning, DMML 2018 34
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Interactive vs automated results

=  Walktrap (Pons & Latapy, 2005) and Infomap (Rosvall & Bergstrom) — two
best results with default setting (1graph package), 1 or 2 parameters.

= Details don’t quite match, but differences reasonable. Graph-segmentation of
SOM + CONN finds relevant structure, and FAST.

Segmentation method
Input to

. ‘ Walk Infoma
araph cutting Interactive alktrap P

. = Next: explore non-
SOM _ def:-ault parameters,
Prototypes - for improvement
+ CONN
s Interpret
SOM differences
Prototypes -
+ Euclidean
distance

R T
g E. Merényi, Rice U . .
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Mass-processing perspectives for pipelines
(numbers for the ALMA example)

m Do SOM learning in parallel hardware : <5 sec

o Dedicated mid-level FPGA implementation, could be much faster for
more $S

m Cluster the SOM prototypes automatically with SOM+CONN
input to graph-segmentation algorithms: < 1 sec

= Scales linearly with # of samples, and (within large range) with #
of feature dimensions

Other benefits:

m Applicable to disparate data combined from different spectral
windows or instruments

= Applicable to chaotic sources (GMCs, galaxy clusters, etc.)
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Conclusions

= Rich data (e.g., spectral resolution for ALMA) offer a magnifying
lens for the underlying physical processes (kinematics of atomic
and molecular gas and the distribution of solid particles in the
ALMA example).

= Capabilities to exploit the richness and subtleties of features
(details of the feature vectors) can enlarge the discovery space.

= Combining proper methods and metrics brings magnitudes of
algorithmic speed-up, support large-scale, automated processing.

= For DM search, stacked measurements (images) taken at
different frequencies, and/or other (possibly disparate) data can
be input to ML, for increased discovery potential.
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