Unsupervised Machine Learning

Erzsébet Merényi

Department of Statistics and Department of Electrical and Computer Engineering Rice University, Houston, Texas

Credits: Parts are joint work with current and former graduate students Josh Taylor, Patrick O'Driscoll, Brian Bue, Lili Zhang, Kadim Taşdemir, Maj. Michael Mendenhall, Abha Jain and many collaborators

Learning With a Teacher

(supervised learning)

Learning Without a Teacher

(unsupervised learning)

An unsupervised (self-organized) learner captures some internal characteristics of the data space (data manifold): structure, mixing components / latent variables, ...

- Ex: clusters
- Ex: principal components
- Ex: independent components

Phases of the Full Learning Process **Unsupervised + Supervised**

Feature Vector (Data Point) in n-Space

- Input to a learning algorithm
- Vector of descriptors for an object of interest in physical space: $\mathbf{x} \in \mathbb{R}^n$
- Ex: Descriptors for a galaxy
 - Image unfolded to a vector of pixel values
 - Vector of derived statistics: mean brightness, width, eccentricity, RGB color values, ...
 - Spectrum
 - Combinations
- Ex: Descriptors for a dark matter / dark energy phenomenon ?
- The choice of descriptors is important: must characterize the objects from the point of view of the problem!
- Objects close in physical (problem) space may not be close in feature space and vica versa
 - Careful with using image (spatial) context can help; or can lose important discovery of small size in physical space

. Merényi, Rice U rzsebet@rice.edu

Choice of Feature Vector

Feature vector: (R,G,B,"curvature", radius) =>

This matches our intuitive categorization better

Finding Clusters of Rare Materials on Mars

Data: VIS-NIR Spectral Imagery, Imager for Mars Pathfinder; Colors: clusters

(an incomplete view)

In general, seeks to model the structure of data space from unlabeled data: estimation / identification of the distribution

- Finding the (relative) concentration(s) of data points and topology
- Summarize & explain the key features / relationships in the data

Complexity is the major challenge!

Data sets with same feature dimensionality (n=2), same # of points (N)but with increasing structural complexity pose different level of challenge for identifying the structure

Complex (Complicated) Data Space

Challenges

- High dimensionality
- Large volume
- Multi-modal (has clusters)
- <u>Highly structured</u>
 - Not linearly separable
 - Widely varying shapes and sizes
 - ... densities (vary within and across clusters)
 - ... proximities
 - ... local dimensionalities

No statistical models

To faithfully learn data relations, and to keep discovery potential, no (or least) assumption should be made about the structure. Let the data speak.

Imagine in 100 dimensions!

Highly structured data space

Merényi, Taşdemir, Zhang, Springer, LNAI 5400. 2009

Ex: K-means is tuned to capture spherical / ellipsoidal clusters. Can't capture irregulars.

(an incomplete view)

Major approaches

- (Kernel) density estimation / mixture modeling
- Latent variable models such as PCA, ICA, SVD factorization (BSS)
- Anomaly detection (really, any of the others)
- Cluster analysis

Concentrate on this

Various overlaps and correspondences exist across these categories.

T. Heskes, IEEE TNN 2001: links between mixture modeling, VQ and SOM

Discovery potential vs algorithm constraints

Constraints increase, interpretability increases

Discovery potential decreases

(an incomplete view)

- Density estimation / mixture modeling
 - Model the data with a weighted sum of functions (linear)
 - Predefined functional form
 - Predefined # of functions
 - EM often used for determining the parameters of fit (parameters of the functions and mixing weights)

Figure from Hastie et al, 2008

Relation to clustering: Mixture components can be viewed as clusters.

(an incomplete view)

- Latent variable models
 - Also mixtures of "components", which represent clusters (classes)
 - Components are <u>not predefined functions</u>, derived from data, along with mixing weights
 - # of components predefined
 - Mostly linear mixtures
 - Non-linear extensions exist but difficult
- PCA: Finds uncorrelated (lin. Independent) components -> limited to 2nd order stats
 - vast literature, widely available code
 - SVD: More general version of PCA
- ICA: Finds statistically independent components – uses higher order statistics
 -> finds more interesting structure
 - Different approaches (information theor.,

E. Merényneural, statistical, see Ref) erzsebet@rice.edu Structure seen by ICA but not by PCA

Clustering

(somewhat arbitrary, biased)

 Goal: To partition the data space into segments (clusters) such that points within a cluster are closer to one another than to any point in any of the other clusters.

- Measure of clustering quality without labeled data: assesses how well the clusters match the natural partitions (chicken – egg?)
- Function of some distortion or intrinsic data relation within and across clusters; depends on the measure of similarity / dissimilarity metric used
 - Metrics often distance-based (similarity = proximity, dissimilarity = distance)
 - Other measures can be used, which are not distances in mathematical sense
 Ex: Kullback-Leibler divergence; Connectivity measure
- Frequently used: *cluster validity index (CVI)*
 - Review of CVI-s in Bezdek & Pal, 1998; Taşdemir & Merényi, 2011
 - Others: Entropy, modularity, Gap statistic

E. Merényi, Rice U erzsebet@rice.edu

Cluster Validity Indices (CVI)

- Most CVI-s measure the ratio of separation between clusters and scatter within clusters (aka between clusters and within-cluster distance).
- Separation and scatter are often calculated from distances
 - Between-cluster distance metrics
 - Centroid linkage
 - Complete linkage
 - Single linkage

• ...

- Within-cluster distance metrics:
 - Average distance to cluster centroid, dw_cent
 - Maximum distance between any pair, dw_max
 - Maximum of nearest neighbor distances dw_nn_max
 - □ more ...

Approaches to Index Construction

Classic measures: GDI, DBI – misjudge complex clusterings

Newer Measures For Separation and Scatter

New indices defined by the distances (of data) and the data distribution.

 Ex: CDbw (Composite Density between and within clusters) (Halkidi, Vazirgiannis, 2002)

 $CDbw(c) = Intra_dens(c) \cdot Sep(c), c \ge 1$

- Performance of a CVI (whether it is effective measuring the clustering quality) depends on its construction, and on the complexity of the clusters
- Usually good judgment for simple structures; misleading index values for complicated structures – still much work to do
- Taşdemir & Merényi, 2011 evaluate several CVI-s including some more recent ones

Clustering Approaches

- "<u>Mode finding</u> (or bump hunting): find multiple convex regions [of the input space X] that contain <u>modes</u> of Pr(X).
 - This can show if Pr(X) can be expressed by a mixture of simpler density models each representing a distinct type of observations.
 - Find a smaller set of *latent* variables (the modes)
 - Can get *difficult / intractable in higher dimensions*
- Combinatorial methods find optimum partitioning wrt some goal function
 - Work directly on the observed data points (do not use probability models)
 - Each data point assigned to one cluster (many-to-one encoding)
 - Predefined # of clusters, K
 - BUT: for N data points and K clusters, the # of possible partitionings (cluster assignments) S(N,K) quickly explodes

Ex: N=10, K=4 => S(10,4) = 34,105

Ex: N=19, K=4 => S(19,4) ≈ 10^10 !!

 $S(N,K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} \binom{K}{k} k^{N}.$

Hierarchical Clustering

Builds a binary tree where each node is a cluster; the children of a node are subclusters

- Work directly on the observed data points (do not use probability models); Assign each data point (n-dim sample) to one cluster
- The tree can be built by <u>agglomerative</u> (bottom-up) method, successively merging the two closest clusters
- or by <u>divisive</u> (top-down) method, successively splitting clusters by some quality criterion (e.g., a CVI)
- # of clusters, K, is NOT predefined, but obtained by cutting the resulting tree (dendrogram), by a quality criterion
- NEGATIVE: can be computationally intense (works with pair wise (cluster) similarities; or with CVIs involving the former)
- POSITIVE: <u>Model-free</u>, any similarity measure can be plugged in; Can capture irregular clusters, and a large number of clusters
- BEWARE: The choice of cluster similarity / distance or partitioning quality measure greatly influences the outcome

Outcomes of Clustering the Same Data With Different Similarity Measures

Dendrograms, showing the stages of the clustering. Each was built using a different cluster similarity metric, indicated at the top of the panels. (Figure from Hastie et al., 2008)

Prototype Based Clustering Approaches

Alleviate computational burden: compute distances to a smaller number of *prototypes* (not between all pairs of data points); this is VQ, coarse grained

- **K-means:** iteratively adjusts initial cluster centers (Linde, Buzo, Gray, 1980)
- Computationally inexpensive
- <u>K is predefined</u>; optimal # of clusters must be determined by charting a partitioning quality measure (such as a CVI) as a function of K
 - Gap measure (Tibshirani et al, 2001: average within-cluster scatter compared to same of uniform distribution; the ideal K is where the "gap" is maximum. The gap ignores the between-clusters distances!
- Model-free but <u>favors spherical clusters</u> (each prototype is center of one cluster implicitly assumes spherical clusters)
- Very sensitive to the initial choice of cluster centers
- Experience: works well for simple data; but not for high-D, complex data

Learn the data structure with Self-Organizing Maps Machine learning analog of biological neural maps in the brain

Two simultaneous actions:

Adaptive Vector Quantization

 (VQ): puts the prototypes in the
 "right" locations => allows
 summarization of N data vectors by
 O(sqrt(N)) prototypes; while
 encoding salient properties

- Ordering of the prototypes on the SOM grid according to similarities; *only SOMs do this*.

I.e., SOM learns the structure (the distribution) AND expresses the topology (similarity relations) on a low-dimensional lattice.

Finding the prototype groups: postprocessing – segmentation of the SOM based on representations of the SOM's knowledge

Toy example: unsupervised SOM learning of 4 Gaussian clusters Evolution of prototypes, and visualization

E. Merényi, Rice U erzsebet@rice.edu

Unsupervised Learning, DMML 2018

Graph representation of SOM knowledge: Induced Delaunay graph Well-learned SOM prototypes (black vertices), nicely follow right the data distribution. eye Placement of prototypes is crucial! (Assume correct learning.) Voronoi diagram Delaunay graph

Martinetz and Schulten, 1994:

- The induced Delaunay graph perfectly represents topology - but how to get it in high-D space?
- **Competitive Hebbian learning** (neural maps) produces the induced Delaunay graph (with one mild condition)

To get it: Connect two prototypes if they are closest and 2nd closest match for a data vector 24

E. Merényi, Rice U erzsebet@rice.edu

(Figures from Taşdemir and Merényi, 2009)

Unsupervised Learning, DMML 2018

Induced Delaunay

graph

Connectivity (CONN) similarity measure and graph

(Taşdemir & Merényi, IEEE TNN 2009)

Connectivity (CONN) similarity measure and graph

(Taşdemir & Merényi, IEEE TNN 2009)

SOM vs K-means: Spectral Statistics of Clusters Data: Ocean City, 200-band Hyperspectral Image of Urban Area

Example: ALMA hyperspectral image – spectral variations

NeuroScope structure discovery from ALMA data HD 142527 protoplanetary disk (data: Isella 2015)

Coloring of clusters is arbitrary, not a heat map!

(Merényi, Taylor, Isella, Proc. IAU 325, 2016)

Clusters found in HD142527 Data: ALMA image cube of HD142527 (Isella, 2015)

More discovery within one molecular line

(Merényi, Taylor, Isella, Proc. IAU 325, 2016)

E. Merényi, Rice U erzsebet@rice.edu More discovery from the combination of lines Unsupervised Learning, DMML 2018

Our Approach To Structure Discovery

<u>Step 1:</u> Learn the data manifold with SOMs - easy, reliable, little tuning needed, automatic, unsupervised.

- Use all input features keep the discovery potential
- No assumption except lose upper limit of potential clusters (to allocate enough SOM prototypes)
- Use Conscience SOM (CSOM) for maximum entropy learning (best matching of the data distribution)

<u>Step 2:</u> cluster the SOM prototypes – can be hard

- Need good knowledge representation, sensitive similarity measure, like the CONN graph, and visualization.
- Interactive cluster extraction (based on recipe) is best so far. DOES NOT SCALE.
- We look to modern graph-segmentation methods ...

Clustering By Graph-Segmentation

Community Finding

- Works with a pair wise adjacency (proximity) matrix A of the data as edges in a graph where nodes represent data points
- Cut the graph "optimally". Ex:
 - Spectral partitioning cut the <u>graph Laplacian</u> matrix, L, to minimize the <u>cut size</u>, subject to equal-size partitions (!)

Cut size = # edges across different clusters; can be expressed as a weighted sum of eigenvalues of L.

Optimization assigns large weights to terms with small(est) eigenvalue under norm. constraint.

 Cut by (2nd, approximate) "leading eigenvector" of the <u>modularity matrix</u> B (devisive); optimizes a <u>modularity function</u> based on B

Works better than spectral partitioning.

 Fast & Greedy – agglomerative, also optimizes the same modularity function

(From Newman, 2006)

E. Merényi, Rice U erzsebet@rice.edu

Clustering By Graph-Segmentation Community Finding

- Cut the graph "optimally". Ex: (cont'd)
 - Walktrap uses random walk to derive a similarity measure based on the distribution of destination states of vertices i and j, after t steps. Then uses this measure in agglomerative hierarchical clustering.

Does not use the modularity criterion for tree building, but uses to evaluate afterwards

- Infomap also based on random walk, but forms an entropy-based cost function from the within- and between-clusters transitions.
- Many more ... review in Fortunato (2010)
- Available in the igraph package, 0 to 2 parameters – good for automation
- BUT: extremely resource hungry
 - N data points => O(N^2) edges
 - 1000 x 1000 px image => 10^12 edges!!!

(From Pons and Latapy, 2006)

Notice that the peaks of the modularity (goal) function Q indicate that relevant partitionings may exist on multiple scales.

Automation For Segmentation of the SOM Graph-segmentation informed by SOM and CONN

- Graph-cutting methods: automatic, only 1 or 2 parameters, some have none *
- Can't deal with many data points. N vectors => N^2 edges. For this small ALMA image (56,000 vectors), over 10^9 edges !!!
- ③ ③ Use the intelligently summarized data (SOM prototypes) as input

Interactive vs automated results

- Walktrap (Pons & Latapy, 2005) and Infomap (Rosvall & Bergstrom) two best results with default setting (igraph package), 1 or 2 parameters.
- Details don't quite match, but differences reasonable. Graph-segmentation of SOM + CONN finds relevant structure, and FAST.

Mass-processing perspectives for pipelines (numbers for the ALMA example)

Do SOM learning in parallel hardware : < 5 sec

- Dedicated mid-level FPGA implementation, could be much faster for more \$\$
- Cluster the SOM prototypes automatically with SOM+CONN input to graph-segmentation algorithms: < 1 sec
- Scales linearly with # of samples, and (within large range) with # of feature dimensions

Other benefits:

- Applicable to disparate data combined from different spectral windows or instruments
- Applicable to chaotic sources (GMCs, galaxy clusters, etc.)

- Rich data (e.g., spectral resolution for ALMA) offer a magnifying lens for the underlying physical processes (kinematics of atomic and molecular gas and the distribution of solid particles in the ALMA example).
- Capabilities to exploit the richness and subtleties of features (details of the feature vectors) can enlarge the discovery space.
- Combining proper methods and metrics brings magnitudes of algorithmic speed-up, support large-scale, automated processing.
- For DM search, stacked measurements (images) taken at different frequencies, and/or other (possibly disparate) data can be input to ML, for increased discovery potential.

E. Merényi, Rice U erzsebet@rice.edu

References

- T. Hastie at el. The elements of statistical learning. Springer, 2008
- A. Hyvarinen, Independent Component Analysis, 2001
- M. Van Hulle, Faithful Representations and Topographic Maps, Wiley & Sons, 2001
- D. Wunsch and Xu, Survey Of Clustering Algorithms, IEEE TNN 16:3, pp 645-678, 2005
- Line, Buzo, and Gray, An Algorithm for Vector Quantizer Design, IEEE Trans. Com, Com-28:1pp 84-95, 1980
- R. Tibshirani et al., Estimating the number of clusters in a dataset via the gap statistic, Journal of the Royal Statistical Society, Series B. 32(2): 411–423, 2001.
- Bezdek & Pal, Some New Indexes of Cluster Validity. IEEE Tran. Sys. Man and Cyb. Part B, 28:3 1998
- <u>Taşdemir, K., and Merényi, E. (2011) A Validity Index for Prototype Based Clustering of Data Sets</u> with Complex Structures. *IEEE Trans. Sys. Man and Cyb., Part B.* 02/2011; Vol. 41, No. 4, pp 1039 -1053. DOI: 10.1109/TSMCB.2010.2104319
- Merényi, E., Taşdemir, K., Zhang, L. (2009) <u>Learning highly structured manifolds: harnessing the power of SOMs.</u> Chapter in *"Similarity based clustering", Lecture Notes in Computer Science* (Eds. M. Biehl, B. Hammer, M. Verleysen, T. Villmann), Springer-Verlag. LNAI 5400, pp. 138 168.
- Taşdemir, K, and Merényi, E. (2009) <u>Exploiting the Data Topology in Visualizing and Clustering of</u> <u>Self-Organizing Maps</u>. *IEEE* Trans. *Neural Networks* 20(4) pp 549 – 562.
- Merényi, E., Taylor, J. and Isella, A. (2016), Deep data: discovery and visualization. Application to hyperspectral ALMA imagery. *Proceedings of the International Astronomical Union*, *12*(S325), 281-290. doi:10.1017/S1743921317000175

E. Merényi, Rice U erzsebet@rice.edu

References

- M.E. J. Newman, Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. 2006
- P. Pons and M. Latapy, Computing Communities in Large Networks Using Random Walks. J. Graph Algorithms and Applications, 10:2 pp 191-218. 2006
- Rosvall, M. and Bergstrom, C. (2008) Maps of random walks on complex networks reveal community structure. *Proc. National Academy of Science* 105, pp 1118-1123, Jan 2008.
- S. Fortunato, Community detection in graphs. arXiv, 2010. (103 pages)

