
Machine learning at the LHC

Markus Stoye
Imperial College London, DSI, aMVA

Leiden, 17th , January 2018

Data quality assignment

reconstruction

physics analysis

ML

• Machine learning (shallow) is essential at the LHC

Trigger

computing

Simulation

1

Data quality assignment

reconstruction

physics analysis

ANNs

Trigger

computing

Simulation

2

• Machine learning (shallow) is essential at the LHC
• I will focus on physics relevant newer developments in

context of (deep) neural networks

physics analysis

3

Parameterized neural
networks with mass as
input

Train for different q

arXiv:1601.07913

• Background is given random parameters q values samples from signal PDF
• PNN interpolates between masses and smoothly work for all masses

→

4

Parametric Neural Networks for scans
Situation: Simulation scans, a few discrete values of a real number
physics parameter q are simulated
Question: How to best use this in training of classifier?

ROC: m(X)=650 GeV

Blue: Only use m(X)=650 GeV
Red: trained not using m(X)=650 GeV

• Same ROC performance show that the interpolation works
• Smooth (no bumps) and good separation over full mass range

5

Results with PNN
• Search for X → hh → bblnln (CMS-PAS-HIG-17-006)
• Not a unique signal, q = mass(X), unknown

6

Independence of classifier of certain features

Simple bump-hunt:
• Fit a function to “side-band”

to estimate background
• Check for bump

• Used a classifier threshold to increase signal fraction in sample, but want
to avoid artificial bump in background

• Many features depend on mass (X), i.e. classifier likely as well even without
adding the mass

• Enforce independence of classifier on mass (X)

7

Adversarial training

=mass

Background discriminator

Regress Z from f

Intuition: enforce that you cannot infer the “mass” from the discriminator
output

arXiv:1611.01046

8

arXiv:1703.03507

Signal at 100 GeV

• Dependence of NN output on mass significantly reduced
• Mass shape less effected by cuts on discriminator

Test of method on search with jet mass

9

reconstruction

10

Deep learning at LHC

NIPS reached 2017
plateau due limited
tickets

• Deep learning community continues grow at
LHC and elsewhere

• NN toolkits improved as well
• Without higher energy collisions we need better

data analysis to keep progressing in science

optimal

pe
rfo

rm
an

ce

(labeled) data

Large NN

other ML
medium NN

• High dimensional inputs with big dataset and a large Deep Neural
Networks brought breakthroughs

• We have huge numbers of simulated samples with truth information 😀
• It is very hard to estimate the headroom left 😕

headroom

11

Deep learning: more is better

Interesting
parameters

• Ideally we would have the pdf for likelihoods
• We can not write the pdf down analytically

for our complex experiments

pdf Experimental
data features

Nuisance
parameters

Infer SM or NP parameters from data

Interesting
parameters

MC
samples pdf

DNN
Learn classification

and regression

Experimental
data featurespdf

Simulated
data features

• Practically we can make MC simulation
• We that we can try a ML to estimate

interesting parameters

Nuisance
parameters

Supervised deep learning to estimate parameters

Interesting
parameters

MC
samples pdf

DNN
Learn pdf

Experimental
data featurespdf

Simulated
data features

Ultimately we could even learn the pdf

Nuisance
parameters

Deep learning for distributions

15

Overview of dimension involved

• pdf(X,SM+NP, q)
• Experimentel features: XDIM ~

O(100 M)
• Theory parameters: (SM+NP)DIM~

few handfuls
• Calibration constants ect. qDIM ~ 1

M (nuisance parameters)

Process needs to be factorized in a chain

16

From raw data to intermediate physics features

1) Analyze raw data per sensor
2) Find other sensors with signals of

track(s)
3) Robustly fit track parameter, MLE

(momenta), (higher level)
4) …

• We start by transforming raw data to a physically
meaningful (lower dimension) representation

17

Higher features, particles that left signals in the
detector

a) Match intermediate
information from
different detectors to
built particle features,
e.g. particle ID (muon),
momenta, …

b) Particle flow assigns
all intermediate physics
features to particles
features (particle
candidates)

18

Building highest level features for final data
analysis

1) Assign (we cluster) particles to a partons we can calculate
2) Estimate hard particle’s features
3) Parton’s features analyzed allows using shallow ML, MLE, …

Parton level picture

19

Reconstruction chain

Improve individual pieces of the chain
• Deep learning already in standard reconstruction chains
• Jet classification
• Silicon sensor hit reconstruction
• tracking
• …

Do a few of the chain’s pieces simultaniously
• First positive feasibility studies

end-to-end-learning (f* the chain)
• Mostly an idea at this point

Forward chain with increasingly high level features

• 2D convolutional, e.g. from calorimeter cells
• A natural representation of pure calorimeter information
• Not all inductive biases, e.g. translational invariance, of convolutional

networks apply in real detectors!

Jet images

1612.01551

Gluon radiate more:
• Typically wider spread and softer particles
• Thinner and harder particles

1612.01551

21

Quark vs. gluon jet classification

Mild performance gain with respect to traditional
methods (BDT)

Energy densities captures by calorimeter!

22

Flavor tagging (b,c, tagging)

Key features:
• Displaces tracks (d0) or

secondary vertices
• Tracks and vertices more

complex structure than
calorimeter

• Number of tracks vary

Image not a solution for flavor tagging

23

Recurrent network for tracks

• 15 most displaced Tracks fed into
recurrent network

• Takes for example correlation
between tracks displacements (d0)
into account

24

Recurrent network for tracks

Significantly better results at high momentum

“Complete” jet information
• All particle candidates of a jet and

many features per particle
• Add in addition vertices aligned to the

jet
• Jet PT, h and number of vertices in

events for PNN
About 1000 features

25

Complete jet: particle flow candidates and physics
objects

CMS particle candidates contain “most” information originating from a “particle”

“Complete” jet input can be used for multi-class classification or regression

part25
ch CNNch RNNch

part0ch CNNch RNNch

18 8

… … …
150

• Four 1x1 1D CNN layers reduces 18 to 8 features (feature engineering) or
you can see it as non linear (4 layers) particle embedding

• A recurrent NN (LSTM) represents the sequence of charged particles
that is sorted by impact parameter significance

• A constant length vector is than given to the next layers

26

Physics object based NN architecture for jet input
Example: charged particle candidates

CNNchchar. part. RNNchCNNchchar. part. RNNchCNNchchar. part. RNNchCNNsvsec. vert. RNNsv

CNNchchar. part. RNNchCNNchchar. part. RNNchCNNchchar. part. RNNchCNNneneutr. part. RNNne

Classification
DNN

CNNchchar. part. RNNchCNNchchar. part. RNNchCNNchchar. part. RNNchCNNchcharg. part. RNNch

FC

global

Classification
DNN

~700 400 250
® ® ®

• Particle and vertex based DNN has factor 10 less free parameters than a
generic Dense DNN would have

• 100M jets used for training, overtraining is not an issue

~ 700 inputs and 250.000 model parameters

27

Particle and vertex based DNN: DeepJet

DP-2017-013

Blue: generic DNN (650 inputs)
Green: CMS tagger (~65 human made inputs)
Red: Physics inspired DNN (650 inputs)

Particle and vertex based DNN performs best
28

Impact of DNN architecture

DP-2017-013

Increase input step by step from DeepCSV:
• Not applying former track selection helped
• More features helped

~O(10)

50%

29

DeepJet results

Very significant gain at high pT

Not yet confirmed in data, validation ongoing

Light quark efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
isi

d.
 p

ro
ba

bi
lity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CMS Simulation Preliminary

=13 TeVs

DeepJet

recurrent

convolutional

 = 600-800 GeV
T

pQCD events,
 > 500 GeV

T
jet p

Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet,
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on
simulated QCD events with p̂T between 600 and 800 GeV and using jets with a pT above 500 GeV.
The absolute performance in this figure serves as an illustration since the light quark jet
identification efficiency depends on the pT and η distribution of the jets, the event topology, the
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8.
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.

!17

Light quark efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
isi

d.
 p

ro
ba

bi
lity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CMS Simulation Preliminary

=13 TeVs

DeepJet

recurrent

convolutional

 = 30-50 GeV
T

pQCD events,
 > 30 GeV

T
jet p

Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet,
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on
simulated QCD events with p̂T between 30 and 50 GeV and using jets with a pT above 30 GeV.
The absolute performance in this figure serves as an illustration since the light quark jet
identification efficiency depends on the pT and η distribution of the jets, the event topology, the
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8.
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.

!14

DPS-2017-027DPS-2017-027

We filter on generator level only light quarks and gluons that did
NOT split to heavy flavor.

→ Generic DeepJet and custom quark vs. gluon DNN (2D convolutions) gave
very similar results!

→ Data is multi-class, without heavy flavor removed DeepJet was clearly best

30

Comparisons of DNNs

31

Fat jets

Key features of tops:
• Masses W, t, W polarization
• 3 “prong”
• b-subjet and 50% with c-subjet

b
c

s

Not obvious if these key features factorize or need to be
addressed simultaneous.

32

Large cone jets for boosted objects

1701.08784

• 2D convolution
• No flavor tagging

CMS-DP-17-049

• DeepJet (using all particles +
vertices) with and without
flavor tagging

• Modest gain w.r.t. state of the art features + BDT
• Simultaneous flavor and structure tagging show improvements

33

Residual deep neural networks used in fat DeepJet layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112⇥112 7⇥7, 64, stride 2

conv2 x 56⇥56

3⇥3 max pool, stride 2


3⇥3, 64
3⇥3, 64

�
⇥2


3⇥3, 64
3⇥3, 64

�
⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

conv3 x 28⇥28


3⇥3, 128
3⇥3, 128

�
⇥2


3⇥3, 128
3⇥3, 128

�
⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥8

conv4 x 14⇥14


3⇥3, 256
3⇥3, 256

�
⇥2


3⇥3, 256
3⇥3, 256

�
⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥23

2

4
1⇥1, 256
3⇥3, 256

1⇥1, 1024

3

5⇥36

conv5 x 7⇥7


3⇥3, 512
3⇥3, 512

�
⇥2


3⇥3, 512
3⇥3, 512

�
⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512

1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

plain-18
plain-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r
(%

)

ResNet-18
ResNet-34

18-layer

34-layer

18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer
3We have experimented with more training iterations (3⇥) and still ob-

served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

Dx

x

x

x+Dx

• Adding more layers can degrade the result
• Later layers have to learn to not change x (identity) and add a correction

(Dx)
• RESNETs only learn adding a residual Dx, not identity

RESNETs useful for to make deep convolutional networks

1512.03385

34

Recursive Neural Networks

• Use QCD inspires clustering to built a tree of jet
particles

• Use this for recursive NN

• Similar performance as simple pT ordering RNN
• Potentially more stable w.r.t. uncertainties from theory

W-tagging

1702.00748

35

Recursive Neural Networks for event classification

Also shown as event classifier, i.e. merger steps of the traditional analysis chain

Classifies
event

jet1 jet2 jetn

Particle
momenta

Learned jet features

36

Message Passing Neural Networks

W-tagging

• Learn the adjacency matrix! • Some gain, e.g. 10% signal
efficiency at 1% false positives

• Very data efficient!

https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf

(see Kyle’s talk)

37

Definition of the target (loss)

⦿ ⦿

Current target

Optimal performance in
simulation

Desired target

Optimal and known
performance in data

We teach ML to hit the wrong target

38

Use data only?

39

Learning by label proportion (semi supervised)
https://papers.nips.cc/paper/5453-almost-no-label-no-cry.pdf

Loss function

Known prob. to be of a class

Mean pred. prob.

“Small prints apply”, e.g. some constraints on loss functions, …

In words: DNN output mean = label proportion

If you have several sets with know label proportions, this is enough for
learning.

40

Just using sets with different label proportions

Z0+jets:

many quark jets

Dijet:

many gluon jets

d

Z0

https://arxiv.org/pdf/1702.00414.pdf

Indeed, it is sufficient to have different, but unknown label proportions

Need more than ONE data set

41

Quark gluon data only example

tion of quark initiated jets varies between 0.21 and 0.32. Figure 3 shows that, while the individual
observables perform di↵erently in the high or low gluon e�ciency (true positive rate) regimes, their
combination in a NN gives consistently better performance. The weakly supervised classifier matches
the performance of the fully supervised NN, despite only knowing sample proportions instead of indi-
vidual event labels. By construction the weakly supervised classifier is also robust against a realistic
amount of mis-modeling in the input variables. This feature is tested by building a pseudo-data sample
where the probability distributions of n and w are distorted in the training sample to emulate the
di↵erence in e�ciency measured in Ref. [6]. The study in Ref. [6] found that a classifier extracted from
simulation is more powerful than one extracted from the data. This is reflected in the results presented
in the right plot of Fig. 3. When a fully supervised classifier is trained on a sample generated with
the same distribution as the test sample (mimicking training and testing on simulation), it achieves a
better performance than when trained on the original sample and tested on the distorted pseudo-data
(mimicking training on simulation and testing on data). In contrast, the weakly supervised classifier
can be trained directly on the distorted pseudo-data sample (representing the data) so is insensitive to
the mismodeling of the input variables. This results in a 10% bias from the standard procedure that
is avoided by the weakly supervised classifier. Even larger di↵erences may be expected from this and
other classification tasks that utilize even more input features or are more mis-modeled. The weakly
supervised classifier is robust and outperforms the standard supervised learning trained on simulation.

Figure 4: ROC curves for instance classification using five individual features and then combined
using a fully supervised network and the weakly supervised classifier.

4 Conclusions

We have presented a new approach to classification with NN in cases where class proportions are
known but individual labels are not readily available. This weakly supervised classification has broad
applicability and has been demonstrated in one important discrimination task in high energy physics:
quark versus gluon jet tagging. In the quark/gluon and related contexts, weakly supervised classifi-
cation provides a robust and powerful approach because it can be directly trained on examples from
(unlabeled) data instead of (labeled, but unreliable) simulation. The examples presented so far have
used a small number of input features to illustrate the ideas, but there is no algorithmic limitation on

– 6 –

Arxiv:1702.00414

Test in simulation with known
labels and a simple neural
network:
→ Weakly and fully supervised
lead to same performance

Very interesting approach with a few caveats:
• Limited statistics in data in tails → tricky for deep learning
• Assumes that quark gluon is the ONLY difference, e.g. color

reconnections are different and many classes present
• You cannot make a ROC curve, i.e. do not know the performance

42

Use data and MC?

43

Domain adaptation

Good samples with
labels for training a
classifier

Source domain (MC) Target domain (real data)

User samples to
apply the training,
no labels available

Much literature; mainly aimed to have good performance of classifier in target
domain. arXiv:1702.05464v1

44

LHCb example, t → µµµ kaggle challenge

a) Discriminator should be
same for real data and MC

b) Discriminator should be
independent of mass

Bests NP discrimination with constraints:

Background is data for computational reasons

1.https://www.kaggle.com/c/flavours-of-physics

45

Domain adaptation to get same data and
simulation output for “known physics”

Good classification

Intermediate features
same for data and MC

Good classifier and small KS test between real data and MC outputs
https://indico.cern.ch/event/567550/contributions/2629724/attachments/15
13629/2361286/Ryzhikov_poster_v6.pdf#search=Andrey%20Ustyuzhanin
%20AND%20EventID%3A567550

46

Conclusion

• Plenty simulated labeled data for supervised learning
available

• Headroom difficult to estimate
• Flavor tagging showed improvements
• First advanced DNNs (DeepJet) implemented in CMS

for reconstruction
• Validation in real data are ongoing
• Still many parts in the reconstruction/data analysis

chain that can be improved (not only tagging & jet
energy regression)

• Use increasingly real data for training and not only the
validation process

