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« Machine learning (shallow) is essential at the LHC



Trigger

Data quality assignment

computing

« Machine learning (shallow) is essential at the LHC
| will focus on physics relevant newer developments in
context of (deep) neural networks






arXiv:1601.07913

Parametric Neural Networks for scans

Situation: Simulation scans, a few discrete values of a real number
physics parameter ¢ are simulated
Question: How to best use this in training of classifier?

Train for different 0 R Parameterized neural
networks with mass as
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* Background is given random parameters q values samples from signal PDF
* PNN interpolates between masses and smoothly work for all masses



Results with PNN

 Search for X = hh = bblvlv (CMS-PAS-HIG-17-006)
* Not a unique signal, © = mass(X), unknown

Blue: Only use m(X)=650 GeV
Red: trained not using m(X)=650 GeV
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 Same ROC performance show that the interpolation works
* Smooth (no bumps) and good separation over full mass range



Independence of classifier of certain features

CMS \s=7TeV,L=51fb'\s=8TeV,L=5.31"
_l T T T T { T ]

Unweighted ]

Simple bump-hunt:

* Fit a function to “side-band”
to estimate background

* Check for bump

Events / 1.5 GeV

—

S/(S+B) Weighted

0““f1o 120 130 140 150
m,, (GeV)
* Used a classifier threshold to increase signal fraction in sample, but want

to avoid artificial bump in background
* Many features depend on mass (X), i.e. classifier likely as well even without

adding the mass
* Enforce independence of classifier on mass (X)



arXiv:1611.01046
Adversarial training

Background discriminator

Classifier f Adversary r

x N\ | (£ 00); )
f(X;65) Y2 (f(X;6¢):6,)
— A P(yisvzes---)
J
/4

A

o, (Z|f(X;65))

o5 Lr(By) 8, c.(6;,6,) RegressZfrom f

>

0,08, = argming, maxg, L(07) — L,(6¢,0,)

Intuition: enforce that you cannot infer the “mass” from the discriminator
output



NN Output

arXiv:1703.03507
Test of method on search with jet mass
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« Dependence of NN output on mass significantly reduced
« Mass shape less effected by cuts on discriminator






Deep learning at LHC
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Deep learning community continues grow at
LHC and elsewhere

NN toolkits improved as well
Without higher energy collisions we need better
data analysis to keep progressing in science
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Deep learning: more is better

optimal
_______________ o optimal
S headroom
@ ~_~ Large NN
£ | _—~—" __--. medium NN
= / ‘ other ML

(labeled) data

* High dimensional inputs with big dataset and a large Deep Neural
Networks brought breakthroughs

* We have huge numbers of simulated samples with truth information &

* [tis very hard to estimate the headroom left &



Infer SM or NP parameters from data

Interesting df Experimental
parameters P data features

Nuisance
parameters

» |deally we would have the pdf for likelihoods
« We can not write the pdf down analytically
for our complex experiments



Supervised deep learning to estimate parameters

a D
Interesting df Experimental
parameters P data features

.
[Nuisance MC Simulated

~
parameters samples pdf 7 data features
)
DNN

Learn classification
and regression

* Practically we can make MC simulation
 We that we can try a ML to estimate
Interesting parameters



Deep learning for distributions

|

|

a D
Interesting df Experimental
parameters P data features
Nuisance MC Simulated
parameters samples pdf data features

\ J

DNN
Learn pdf

Ultimately we could even learn the pdf



Overview of dimension involved

* pdf(X,SM+NP q)

* Experimentel features: Xy ~
0(100 M)

* Theory parameters: (SM+NP)py~
few handfuls

* (alibration constants ect. Oy ~ 1
M (nuisance parameters)

Process needs to be factorized in a chain
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From raw data to intermediate physics features

> s S

1) Analyze raw data per sensor

| 2) Find other sensors with signals of
U track(s)

w A A . 3) Robustly fit track parameter, MLE
m / (momenta), (higher level)
L e 4) ...

« We start by transforming raw data to a physically
meaningful (lower dimension) representation
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Higher features, particles that left signals in the

detector
a) Match intermediate
information from B 1008 cMs
different detectors to > 50
built particle features, of
e.g. particle ID (muon), :
momenta, ... 0
b) Particle flow assigns 100"
all intermediate physics "
features to particles :
features (particle 200555500 150 100 50 0
candidates) x (cm)



Building highest level features for final data
analysis
Parton level picture

b
b

Hadrons are
clustered

together to

1) Assign (we cluster) particles to a partons we can calculate
2) Estimate hard particle’s features
3) Parton’s features analyzed allows using shallow ML, MLE, ...
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Reconstruction chain

Forward chain with increasingly high level features

Improve individual pieces of the chain
* Deep learning already in standard reconstruction chains
Jet classification
Silicon sensor hit reconstruction
tracking

Do a few of the chain’s pieces simultaniously
* First positive feasibility studies

end-to-end-learning (f* the chain)
* Mostly an idea at this point
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Jet images

T 1612.01551

dense layer

Y quark jet
=}

- - A e
,,.A Q . =

O X .
g gluon jet

max-pooling

~

* 2D convolutional, e.g. from calorimeter cells

* A natural representation of pure calorimeter information

* Not all inductive biases, e.g. translational invariance, of convolutional
networks apply in real detectors!



Translated Azimuthal Angle ¢

Translated Azimuthal Angle &

Quark vs. gluon jet classification

Gluon, Normallzed pr Gluon radiate more:
* Typically wider spread and soiter particles
* Thinner and harder particles
Energy densities captures by calorimeter!
1.0 —
Translated Psaudorapldity o I
Quark, Normalized pr § 200 GeV Pythia
o 06H ... Gi
E L ghr;?ge Particle Multiplicity
§ Leading Energy Fraction
§ 0.4+« Two Point Moment
3 N95
— BDT of 5 jet obs.
0.2 | — Fisher LD
—— Deep CNN grayscale
— Deep CNN w/ color
o'%.o 0.2 0.4 Of6 ofs 1.0

Quark Jet Efficiency

Mild performance gain with respect to traditional
methods (BDT)

Translated Psaudorapldity o
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Flavor tagging (b,c, tagging)

——3 tracks b jet

------ b hadron \ Key features:
______ mpact * Displaces tracks (d,) or
secondary vertices
& secovne(jiler)\(’ * Tracks and vertices more

complex structure than

\ "7\ calorimeter

* Number of tracks vary

Image not a solution for flavor tagging
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Recurrent network for tracks

do
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Recurrent network for tracks

T
on Prelimingry

Light-flavour jet rejection for &=77%

2017/2016

200 400 600 800 1000 1200 1400
Jet P, [GeV]

Significantly better results at high momentum

24



Complete jet: particle flow candidates and physics
objects

CMS particle candidates contain “most” information originating from a “particle”

“Complete” jet information
* All particle candidates of a jet and
many features per particle

;

i)
[

! | : f  Add in addition vertices aligned to the
Tracker D‘ ‘ N jet
EU@@EW@UF]@@@@%H@ ' ‘ . .
Cllemeer * et PT, h and number of vertices in
Calorimeter Superconducting ] ‘
et events for PNN
Muon —— Electron —— Charged hadron (e.g. pion) AbOUt 1 OOO features

=== Neutral hadron (e.g. neutron) «===<Photon

“Complete” jet input can be used for multi-class classification or regression
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Physics object based NN architecture for jet input

Example: charged particle candidates

* Four 1x1 1D CNN layers reduces 18 to 8 features (feature engineering) or
you can see it as non linear (4 layers) particle embedding

18 38

part®>, CNN, RNN,,

part®,, CNN,, RNN,, e

* Avrecurrent NN (LSTM) represents the sequence of charged particles
that is sorted by impact parameter significance
* A constant length vector is than given to the next layers

26



Particle and vertex based DNN: Deeplet

~700 400 250
—> —> —>
| |_,” :

c;harg. pért.

>
D
4

-}
®

global

FC

~ 700 inputs and 250.000 model parameters

* Particle and vertex based DNN has factor 10 less free parameters than a

generic Dense DNN would have
100M jets used for training, overtraining is not an issue
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Impact of DNN architecture

Vs=13 TeV, Phase 1
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Blue: generic DNN (650 inputs)

Red: Physics inspired DNN (650 inputs)

Particle and vertex based DNN performs best28



misid. probability

Deeplet results

vs—13 TeV Phase 1
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Very significant gain at high p;

Increase input step by step from DeepCSV:
* Not applying former track selection helped

* More features helped

Not yet confirmed in data, validation ongoing
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Misid. probability

Comparisons of DNNs

We filter on generator level only light quarks and gluons that did

NOT split to heavy flavor.

Vs=13 TeV
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Light quark efficiency

—> Generic Deeplet and custom quark vs. gluon DNN (2D convolutions) gave

very similar results!

—> Data is multi-class, without heavy flavor removed Deeplet was clearly best
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Fat jets

Top Quark Decay

=y

at rest fat jet

Key features of tops:

* Masses W, t, W polarization ﬁ

* 3 “prong”
* b-subjet and 50% with c-subjet °

Not obvious if these key features factorize or need to be
addressed simultaneous.

31



Background rejection 1/ep
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Large cone jets for boosted objects
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2D convolution
* No flavor tagging
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Top vs QCD multijet
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Top efficiency

* Deeplet (using all particles +
vertices) with and without
flavor tagging

* Modest gain w.rt. state of the art features + BDT
* Simultaneous flavor and structure tagging show improvements
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Residual deep neural networks used in fat Deeplet

* Adding more layers can degrade the result

* Later layers have to learn to not change x (identity) and add a correction
(AX)

* RESNETs only learn adding a residual Ax, not identity

error (%)

ResNet-18 VY
—ResNet-34 34-layer

RESNETs useful for to make deep convolutional networks

33
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. 1702.00748
Recursive Neural Networks

: & e Use QCD inspires clustering to built a tree of jet
anti-k; °* Q P J J
‘A particles
2 e Use this for recursive NN
: - Wtagging N\ |

* Similar performance as simple p; ordering RNN
* Potentially more stable w.r.t. uncertainties from theory
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Recursive Neural Networks for event classification

Event embedding Classifier
V() v(t2) V(tar) ClaSSiﬁeS
k& event
hy ™ (e) L L fevent(g)
Learned jet features ~ 7
bl (1) B (t2) B (tar)
RN RN RN
AP [Nat | | et
: Jetﬂ : \et2 et
AL o
Particle
momenta

Also shown as event classifier, i.e. merger steps of the traditional analysis chain
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Message Passing Neural Networks

—— MPNN (learne: d adjacenc y matrix)
—— RecNN (nongated)
1.0
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Signal efficiency

. - ix]
Learn the adjacency matrix! * Some gain, e.g. 10% signal

Kvle's talk efficiency at 1% false positives
(see Kyle's talk) * \Very data efficient!
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Definition of the target (loss)

Current target Desired target
Optimal performance in Optimal and known
simulation performance in data

We teach ML to hit the wrong target
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Use data only?
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Learning by label proportion (semi supervised)

https://papers.nips.cc/paper/5453-almost-no-label-no-cry.pdf
“Small prints apply”, e.g. some constraints on loss functions, ...

Mean pred. prob.
Loss function

\

. N fl(wi)
Jweak = argrrllrlf,:};;,;_):O,]]f Z N —y
i=1

/

Known prob. to be of a class

In words: DNN output mean = label proportion

If you have several sets with know label proportions, this is enough for
learning.
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Just using sets with different label proportions

https://arxiv.org/pdf/1702.00414 .pdf

Indeed, it is sufficient to have different, but unknown label proportions

.

1 :
( Z° gluon-gluon scaltering

many quark jets many gluon jets

/O+iets: Dijet:

T © O ©
o

Need more than ONE data set
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Quark gluon data only example

Test in simulation with known
labels and a simple neural
network:

—> Weakly and fully supervised
lead to same performance

Very interesting approach with a few caveats:

True Positive Rate

Arxiv:1702.00414 —

—— Weakly supervised NN, AUC=0.93_ |
—— Fully supervised NN, AUC=0.93
- - - Feature 1, auc=0.77
- - - Feature 2, auc=0.70
- - - Feature 3, auc=0.78

Feature 4, auc=0.78

- -~ Feature 5, auc=0.71
| | |

co
—
—_
=

0.4 0.6 0.8
False Positive Rate

* Limited statistics in data in tails = tricky for deep learning

 Assumes that quark gluon is the ONLY difference, e.g. color
reconnections are different and many classes present

* You cannot make a ROC curve, i.e. do not know the performance



Use data and MC?
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Domain adaptation
Source domain (MC) Target domain (real data)
Good samples with

labels for training @ digital LR camera
classifier

User samples to
apply the training,
no labels available

amazon.com consum ges

Much literature; mainly aimed to have good performance of classifier in target
domain. ariv:1702.05464v1
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LHCb example, T — ppuu kaggle challenge

Bests NP discrimination with constraints:

e _

newayses B""‘(';‘)'“"" analysis channel  B) Discriminator should be
independent of mass

MC Real Data

Background is data for computational reasons

1.https://www.kaggle.com/c/flavours-of-physics 44



Domain adaptation to get same data and
simulation output for

‘known physics”

i | Good classification

} Intermediate features
same for data and MC

Metrlc Classifier adaptation

AUC (truncated) 0.999 0.9744 0.979

ks(<009)  [EE 0087 0.8

Good classifier and small KS test between real data and MC outputs

https://indico.cern.ch/event/567550/contributions/2629724/attachments/15 4 5
13629/2361286/Ryzhikov_poster_v6.pdffisearch=Andrey%20Ustyuzhanin
%20AND%20EventiD%3A567550



Conclusion

Plenty simulated labeled data for supervised learning
available

Headroom difficult to estimate

Flavor tagging showed improvements

First advanced DNNs (DeepJet) implemented in CMS
for reconstruction

Validation in real data are ongoing

Still many parts in the reconstruction/data analysis
chain that can be improved (not only tagging & jet
energy regression)

Use increasingly real data for training and not only the
validation process
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