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• Brief introduction to global fits of beyond-SM physics theories 
and the Global and Modular BSM Inference Tool (GAMBIT)

• Part 1: GAMBIT comparison of methods for sampling high 
dimensional parameter spaces

• Part 2: Where GAMBIT might benefit from machine learning 
techniques (plus existing GAMBIT machine learning plans)
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Where might we “see” particle dark matter?
● colliders (LHC + previous)
● measurements of the magnetic moment of the muon
● electroweak precision tests
● dark matter direct detection experiments
● searches for antimatter in cosmic rays, nuclear cosmic ray ratios
● radio astronomy data
● effects of dark matter on reionisation, recombination and helioseismology
● relic density (CMB + other data)
● neutrino masses and mixings
● Indirect DM searches (e.g. FERMI-LAT, HESS, CTA, IceCube, etc)



How do we tell which theories are viable?

●  Combine results from all relevant experimental searches

●  This is straightforward for models with few parameters:

 

●  Simplest method: 

- overlay exclusion curves from different experiments
- look for “excluded” and “non-excluded regions”

Beniwal, Rajec, Savage, Scott, 
Weniger, MJW, Williams,  Phys.Rev. 

D93 (2016) no.11, 115016



What if there are many constraints?

●  Need to combine them properly into a joint 
likelihood

●  For two parameter models, can then continue as 
before

 
Beniwal, Rajec, Savage, Scott, 

Weniger, MJW, Williams,  Phys.Rev. 
D93 (2016) no.11, 115016



What if there are many parameters?
●  Much harder in principle

●  Need to:

- scan the space intelligently (grid scan is precisely the worst method)
- interpret the results (Bayesian/frequentist)
- project down to parameters of interest (marginalise/profile)

i.e. need a global statistical fit



What if there are many models?
●  Of course, there are many models

●  Can rinse and repeat the above procedure

●  Notice that we have two distinct problems:

Parameter estimation

Given a particular model, which set of 
parameters best fits the available data

(Rigorous exclusion limits and parameter 
measurements)

Model comparison

Given a set of models, which is the best 
description of the data, and how much 

better is it?

(Model X is now worse than model Y)





GAMBIT modules
●  ColliderBit: collider observables including Higgs + SUSY Searches from ATLAS, CMS, LEP

●  DarkBit: dark matter observables (relic density, direct & indirect detection)

●  FlavBit: including g – 2, b → s , B decays (new channels), angular obs., theory unc., LHCb likelihoods

●  SpecBit: generic BSM spectrum object, providing RGE running, masses, mixings 

●  DecayBit: decay widths for all relevant SM and BSM particles

●  PrecisionBit: precision EW tests (mostly via interface to FeynHiggs or SUSY-POPE)

●  ScannerBit: manages stats, sampling and optimisation



What's in a module?

• Module functions (actual bits of GAMBIT C++ code)
• These can depend on other module functions
• Or can they can depend on backends(external codes)
• Adding new things is easy (detailed manual)
• Hooking up new backends or swapping them is easy
• Module functions are tagged according to what they can calculate → plug 

and play!



How does GAMBIT work?

• You specify what to calculate and how (yaml input file)
• GAMBIT checks to see which functions can do it
• A dependency resolver stitches things together in the 

right order, and calculations are also ordered by speed
• GAMBIT performs the scan and writes output
• Pippi makes the plots



LHC limits: the problem



Model independent LHC limits

• Custom parallelised Pythia MC + custom detector sim
• Can generate 20,000 events on 12 cores in < 5 s
• Then apply Poisson likelihood with nuisance parameters for systematics
• Combine analyses using best expected exclusion
• The best you can do without extra public info from the experiments. CMS are getting 

better at this:
 https://cds.cern.ch/record/2242860/files/NOTE2017_001.pdf



Astro limits: the problem



DarkBit: indirect detection



DarkBit: direct detection



GAMBIT results
● GAMBIT has been released as an open source public 

tool

● 9 papers published in EPJC (design, manual + physics 
studies of scalar singlet model, CMSSM/NUHM1/NUHM2, 
MSSM7)

● Feature article in Physics World March 2017 issue if you 
want a gentler introduction

●  See gambit.hepforge.org for more info



What's next for GAMBIT? 
● More models (2HDM, axion models, more Higgs portal models, RH neutrinos, 

MSSM9 + 4D EW MSSM in near future, non-minimal SUSY later)

● Better interface to model building utilities such as Feynrules and SARAH

● Implementation of more complex LHC likelihoods (e.g. CMS simplified likelihood 
analyses for monojet and 0 lepton searches) plus Run II LHC searches

● CosmoBit 



GAMBIT speed

• You may be thinking: this all sounds very nice, but how quickly can this possibly run?
• GAMBIT is made “quick enough” by:
1) Using massive parallelisation (OpenMP + MPI)
2) Using very smart sampling methods
3) Using approximations in simulations where possible
4) Ordering likelihood calculations by speed, and not doing expensive calculations if simpler 
likelihoods already disfavour a parameter point

Nonetheless: many CPU hours are required for complex models



GAMBIT sampling



ScannerBit algorithms
• ScannerBit contains custom code or interfaces for the following methods:

•  Let's review each of these in turn...

Random

Grid

Markov Chain Monte Carlo (MCMC)

Ensemble Monte Carlo

Nested Sampling

Differential evolution



Random and Grid scanners
• Random: just sample points randomly from the space within some box specified as a prior 

range on each parameter
• Grid: Scan along each axis (within some prior range)
• Not useful for serious applications: random sampling leads to biased inferences when 

applied to almost all problems
• Random and grid scanning both scale terribly with the number of dimensions in a problem

Source: Anders Kvellestad



Random and Grid scanners

Source: Anders Kvellestad



Markov Chain Monte Carlo (MCMC) methods
• MCMC methods have been used for decades in cosmology and particle physics problems
• A popular approach is the Metropolis-Hastings algorithm:
1) Start at a randomly drawn initial point θ

i

2) Select another point θ
trial

 at random using a proposal function q(θ
trial

 |θ
i
 )

3) The candidate point is accepted with the probability (p(θ ) = likelihood for flat prior on θ )

 
4) Set θ

i
 = θ

trial
 if θ

trial
 is accepted, else retain θ

i
, then repeat procedure



Markov Chain Monte Carlo (MCMC) methods
• These points form a Markov chain, which spends time in the parameter space in proportion 

to the target posterior PDF of the parameters (given the supplied likelihood)
• For sufficiently long chains, one obtains independent samples from the target distribution 

p(θ )
• To optimise efficiency, the proposal distribution q should match the (a priori unknown) true 

distribution
• GAMBIT includes an interface to the GreAT MCMC scanner that uses a multivariate 

Gaussian for q
• GreAT runs multiple chains, covariance matrix for chains is obtained from previous 

terminated chains (after thinning and removal of “burn-in” points)



Ensemble MCMC

• Standard MCMC is bad for high dimensional problems and/or multi-modal target functions
• Ensemble MCMC: run concurrent chains, each chain is individually advanced by 

contructing q from set of all points sampled by all chains
• GAMBIT includes the T-Walk ensemble MCMC method
• See ScannerBit paper for full details of how chains are advanced (depends on whether you 

are running the serial or parallelised version)



Nested sampling

• Nested sampling has been very popular in recent years, with many applications in particle 
physics, astronomy and cosmology

• It is much better at handling multimodal target functions than MCMC methods
• An efficient implementation is available in the public Multinest package, which GAMBIT 

makes use of



Nested sampling: a quick review of Bayesian inference

• Given a set of parameters Θ in a model H, plus some data D, Bayes' theorem gives:

• Denominator is a normalisation factor called the “Bayesian evidence”

• MCMC algorithms ignore Z (they give samples from the unnormalised posterior)

likelihood

Posterior probability 
distribution

prior



Nested sampling

• Nested sampling instead calculates Z directly by Monte Carlo integration

• Clever trick: define prior volume

• Can then write evidence integral as:

• Monotonically decreasing function of X 
• Draw N “live points” from prior, at each iteration replace the 

lowest likelihood samples with higher likelihood samples, repeat 
until prior volume has been traversed



Differential evolution: Diver
• Optimisation algorithm, good for multimodal posteriors in high dimensional spaces

• A simple explanation is as follows:

1) Start with a random selection of points in the parameter space (called “vectors”)

2) Mutate vectors by e.g. picking three random vectors and making: (V = “donor vector”)

3) Crossover the donor vectors and original vectors by making trial vectors U that have a 
random selection of components from the original vectors and the donor vectors

4) Select the vectors by computing the likelihood for the original vectors and their associated 
trial vectors, and choosing the highest likelihood vector for the next generation
● See ScannerBit paper for full details of GAMBIT implementation



Scanner comparisons

• GAMBIT allows the scanner to be swapped by changing one line in a yaml file

• This offers a unique test bed for comparison of scanning algorithms

• Have compared algorithms on a non-trivial physics example: scalar singlet DM

• Constraints from direct and indirect DM detection experiments, LHC Higgs invisible width 
searches, relic density upper bound plus theoretical upper bound on the Higgs-singlet 
coupling



Singlet DM



Scanner performance vs number of dimensions



Real time vs number of likelihood evaluations

● T-Walk and Multinest are less efficient (per likelihood 
evaluation) than GreAT and Diver for large dimensional 
problems

● There are several reasons (e.g. ellipsoidal decomposition in 
Multinest, chain advancement calculations in T-Walk, MPI 
bottlenecks, etc)



Posterior mapping: 15D scan using GreAT

• Yikes! Validates assertion that MCMC algorithms do not cope well with multimodal 
posteriors?



Posterior mapping: 15D scan using T-Walk

• The best scan here was the best posterior obtained, taking 9h in total

• Poorly converged scans find all modes, but don't get relative weight correct (and don't 
map the posterior smoothly)



Posterior mapping: 15D scan using Multinest

• Scans with too few live points or too high a tolerance do not find all modes 

• The best scan here took > 21h, and is not as smooth as the T-Walk results

• Multinest also erroneously smooths sharp features due to its ellipsoidal sampling method



Sampling: executive summary

• Quick version: if you are a frequentist, use Diver. If you are a Bayesian, use T-Walk or 
Multinest.

• Longer version: Different algorithms have different quirks, can exploit this to gain insights. 
e.g. use T-Walk to find modes, then focus Multinest scans on those modes

• Using different algorithms with GAMBIT is both beneficial and easy!



Machine learning in GAMBIT

• GAMBIT explorations of large spaces require hundreds of millions of likelihood 
evaluations

• Shaving seconds from a slow likelihood evaluation can have a profound impact on the 
CPU hours required for a convergent fit

• Our slowest likelihood by far is the LHC sparticle search likelihood, the bottleneck being 
Pythia MC event generation

• Interpolation of a pre-simulated grid of likelihoods is a classic solution to this problem

• Downside is that this must be repeated for any physics model of interest



Machine learning for interpolation (CMSSM)

• Showed 5 years back that ML-based regression 
works in a 4D CMSSM (SVM or BNN)

• Interpolated the simulated event yield in the ATLAS 
0 lepton analysis, and reproduced the exclusion limit 
using the ML output

• Since then: SUSY-AI, SCYNet + ??

Buckley, Shilton, MJW, 
Comput.Phys.Commun. 183 

(2012) 960-970



Interpolation of SUSY NLO cross-sections

• For speed, our current GAMBIT SUSY scans use the LO+LL cross-section from Pythia 
(already have this “for free”)

• A ML-based interpolation of NLO cross-sections was meant to be in the first release

• Progress is being made for forthcoming GAMBIT releases

• In future, can also use SUSY AI as a “fast reject” system

• Note: GAMBIT samples are public, and can be used to test and hone SUSY-AI 
performance



Future applications: replacing Pythia for relevant cases
• Pythia is only satisfactory if tree-level diagrams give you most of the answer

• NLO effects substantially modify the kinematics for e.g. monojet searches (see e.g. 
Buckley, Feld, Goncalves, Phys.Rev. D91 (2015) 015017)

• Even in SUSY, the acceptance for models with compressed spectra is highly dependent 
on the initial state radiation model used, and Pythia is deficient relative to e.g. Madgraph 
with explicit radiation of extra partons

• Can we write a code that contain interpolated yields for interesting cases? e.g. DM 
simplified models? Compressed SUSY EW sector? These yields could be reweighted 
depending on the couplings in the model.



Summary

• GAMBIT is an open source, public code for global statistical fits of new physics models

• It has so far proven very versatile for WIMP and non-WIMP dark matter physics, and we 
have an active physics programme for studies of new models

• ML can clearly have a profound impact on our total likelihood evaluation time (on a 
model-by-model basis)

• Reduced calculation times ⇒̊ more physics quicker!
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