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* Brief introduction to global fits of beyond-SM physics theories
and the Global and Modular BSM Inference Tool (GAMBIT)

* Part 1: GAMBIT comparison of methods for sampling high
dimensional parameter spaces

* Part 2: Where GAMBIT might benefit from machine learning
techniques (plus existing GAMBIT machine learning plans)
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Where might we “see” particle dark matter?

colliders (LHC + previous)

measurements of the magnetic moment of the muon

electroweak precision tests

dark matter direct detection experiments

searches for antimatter in cosmic rays, nuclear cosmic ray ratios

radio astronomy data

effects of dark matter on reionisation, recombination and helioseismology
relic density (CMB + other data)

neutrino masses and mixings

Indirect DM searches (e.g. FERMI-LAT, HESS, CTA, IceCube, etc)



How do we tell which theories are viable?

Beniwal, Rajec, Savage, Scott,
Weniger, MJW, Williams, Phys.Reuv.

« Combine results from all relevant experimental searches D93 (2016) no.11, 115016
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What if there are many constraints?

Majorana model (cos & =0)
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What if there are many parameters?

 Much harder in principle

 Need to:

- scan the space intelligently (grid scan is precisely the worst method)
- Interpret the results (Bayesian/frequentist)
- project down to parameters of interest (marginalise/profile)

l.e. need a global statistical fit



What if there are many models?

e Of course, there are many models
e Can rinse and repeat the above procedure

* Notice that we have two distinct problems:

Model comparison

Given a set of models, which is the best
description of the data, and how much
better is it?

(Model X is now worse than model Y)




GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

e Fast definition of new datasets e Many statistical and scanning options
and theoretical models (Bayesian & frequentist)
e Plug and play scanning, physics e [ast LHC likelihood calculator

and likelihood packages _
e Massively parallel

e Extensive model database — not just SUSY
e Fully open-source

e Extensive observable/data libraries

ATLAS F. Bernlochner, A. Buckley, P. Jackson, M. White
LHCb M. Chrzaszez, N. Serra

Belle-11 F. Bernlochner, P. Jackson

Fermi-LAT J. Conrad, J. Edsjo, G. Martinez, P. Scott

CTA C. Balazs, T. Bringmann, M. White

CMS C. Rogan

IceCube J. Edsjd, P. Scott

XENON/DARWIN B. Farmer, R. Trotta

Theory P. Athron, C. Balizs, S. Bloor, T. Bringmann,

J. Cornell, J. Edsjo, B. Farmer, A. Fowlie, T. Gonzalo,
J. Harz, S. Hoof, F. Kahlhoefer, S. Krishnamurthy,

A. Kvellestad, F.N. Mahmoudi, J. McKay, A. Raklev,

R. Ruiz, P. Scott, R. Trotta, A. Vincent, C. Weniger,

M. White, S. Wild

31 Members in 9 Experiments, 12 major theory codes, 11 countries




GAMBIT modules

ColliderBit: collider observables including Higgs + SUSY Searches from ATLAS, CMS, LEP

DarkBit: dark matter observables (relic density, direct & indirect detection)

FlavBit: including g — 2, b - sy, B decays (new channels), angular obs., theory unc., LHCb likelihoods
SpecBit: generic BSM spectrum object, providing RGE running, masses, mixings

DecayBit: decay widths for all relevant SM and BSM particles

PrecisionBit: precision EW tests (mostly via interface to FeynHiggs or SUSY-POPE)

ScannerBit: manages stats, sampling and optimisation



What's in a module?

* Module functions (actual bits of GAMBIT C++ code)

* These can depend on other module functions

* Or can they can depend on backends(external codes)
* Adding new things is easy (detailed manual)

* Hooking up new backends or swapping them is easy

* Module functions are tagged according to what they can calculate — plug
and play!



How does GAMBIT work?

* You specify what to calculate and how (yaml input file)
* GAMBIT checks to see which functions can do it

* A dependency resolver stitches things together in the
right order, and calculations are also ordered by speed

* GAMBIT performs the scan and writes output
* Pippi makes the plots



LHC limits: the problem
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Model independent LHC limits

* Custom parallelised Pythia MC + custom detector sim

* Can generate 20,000 events on 12 coresin < 5s

* Then apply Poisson likelihood with nuisance parameters for systematics
* Combine analyses using best expected exclusion

* The best you can do without extra public info from the experiments. CMS are getting
better at this:

https://cds.cern.ch/record/2242860/files/NOTE2017_001.pdf



Astro limits: the problem
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DarkBit: indirect detection

Gamma rays:

b
X <
. . P2 .
* Theoretical spectra calculated using > b

branching fractions and tabulated
gamma-ray yields

y
0 g'
X
* Non-SM final state particles and Higgs

are decayed on the fly with cascade

Monte Carlo

 gamlike (gamlike.hepforge.org): New
standalone code with likelihoods for DM

searches from Fermi-LAT (dwarf
spheroidals, galactic centre) and H.E.S.S.
(galactic halo)

E* dN/dF [GeV]
=
=
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Solar neutrinos: ’ o

* Yields from DM annihilation in sun calculated by DarkSUSY. IceCube
likelihoods contained in nulike (nulike.hepforge.org) standalone code.



DarkBit: direct detection

* In parallel with GAMBIT, we introduce A\

LUX 2013 |

_____

DDCalc (ddcalc.hepforge.org), atoolto sl § SuperCDMS|
T+ - - \ — LUX 2016 1
—— PandaX 4

calculate event rates and complete
likelihood functions for direct detection

[em”]

10-ME

TSN

experiments taking into account: 1015
* A mix of both spin-independent and B e
. . 10t 102 10%
dependent contributions to the my [GeV]

scattering rate. e T Pandax |
— FICO 6O
* Halo parameters (local density, DM . — PICO L
velocity dispersion, etc.) chosen by %
the user. 2
* We currently have implemented
likelihoods for Xenon(1T, 100), LUX, 1010
PandaX, SuperCDMS, PICO(60, 2L), o [GeV]
and SIMPLE e Official 90% CL limit

—— DDCalc



GAMBIT results

* GAMBIT has been released as an open source public
tool

* 9 papers published in EPJC (design, manual + physics

studies of scalar singlet model, CMSSM/NUHM1/NUHM2,

MSSM7

* Feature article in Physics World March 2017 issue if you
want a gentler introduction

See gambit.hepforge.org for more info
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What's next for GAMBIT?

* More models (2HDM, axion models, more Higgs portal models, RH neutrinos,
MSSM9 + 4D EW MSSM in near future, non-minimal SUSY later)

* Better interface to model building utilities such as Feynrules and SARAH

* Implementation of more complex LHC likelihoods (e.g. CMS simplified likelihood
analyses for monojet and 0 lepton searches) plus Run |l LHC searches

* CosmoBit



GAMBIT speed

* You may be thinking: this all sounds very nice, but how quickly can this possibly run?
* GAMBIT is made “quick enough” by:

1) Using massive parallelisation (OpenMP + MPI)

2) Using very smart sampling methods

3) Using approximations in simulations where possible

4) Ordering likelihood calculations by speed, and not doing expensive calculations if simpler
likelinoods already disfavour a parameter point

Nonetheless: many CPU hours are required for complex models



GAMBIT sampling
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ScannerBit algorithms

* ScannerBit contains custom code or interfaces for the following methods:

Random

Grid

Markov Chain Monte Carlo (MCMC)
Ensemble Monte Carlo

Nested Sampling

Differential evolution

 Let's review each of these in turn...



Random and Grid scanners

Random: just sample points randomly from the space within some box specified as a prior
range on each parameter

Grid: Scan along each axis (within some prior range)

Not useful for serious applications: random sampling leads to biased inferences when
applied to almost all problems

Random and grid scanning both scale terribly with the number of dimensions in a problem

Iinteresting
——- ]

lim
D— o0 1% total

Source: Anders Kvellestad




Random and Grid scanners

P(boundary) = 1 — P(not boundary) =1 — p? Source: Anders Kvellestad

P(boundavy)




Markov Chain Monte Carlo (MCMC) methods

* MCMC methods have been used for decades in cosmology and particle physics problems
* A popular approach is the Metropolis-Hastings algorithm:
1) Start at a randomly drawn initial point 6

2) Select another point 6 at random using a proposal function q(ts?triall |0,-)

3) The candidate point is accepted with the probability (p(6 ) = likelihood for flat prior on 6 )
p(gtrial) Q’(Gz ‘Gtrial) )

p(0i) q(0ria|6;)
4) Set 6 = 6 __if 6__is accepted, else retain 8, then repeat procedure

a(gtrial‘gi) = min (1';



Markov Chain Monte Carlo (MCMC) methods

* These points form a Markov chain, which spends time in the parameter space in proportion
to the target posterior PDF of the parameters (given the supplied likelihood)

* For sufficiently long chains, one obtains independent samples from the target distribution
p(6)

* To optimise efficiency, the proposal distribution g should match the (a priori unknown) true
distribution

« GAMBIT includes an interface to the GreAT MCMC scanner that uses a multivariate
Gaussian for g

* GreAT runs multiple chains, covariance matrix for chains is obtained from previous
terminated chains (after thinning and removal of “burn-in” points)



Ensemble MCMC

« Standard MCMC is bad for high dimensional problems and/or multi-modal target functions

* Ensemble MCMC: run concurrent chains, each chain is individually advanced by
contructing g from set of all points sampled by all chains

* GAMBIT includes the T-Walk ensemble MCMC method

* See ScannerBit paper for full details of how chains are advanced (depends on whether you
are running the serial or parallelised version)



Nested sampling

* Nested sampling has been very popular in recent years, with many applications in particle
physics, astronomy and cosmology

* It is much better at handling multimodal target functions than MCMC methods

* An efficient implementation is available in the public Multinest package, which GAMBIT
makes use of



Nested sampling: a quick review of Bayesian inference

* Given a set of parameters © in a model H, plus some data D, Bayes' theorem gives:
likelihood

/

Posterior probability Pr(@|D,H) — PI(DI ©, H) Pr(@|H) ~— prior
distribution Pr(D|H)

* Denominator is a normalisation factor called the “Bayesian evidence”

Z = /ﬁ(@))ﬂ(@))d‘j@),
* MCMC algorithms ignore Z (they give samples from the unnormalised posterior)



Nested sampling

* Nested sampling instead calculates Z directly by Monte Carlo integration
* Clever trick: define prior volume dX = 7(©)d”© X(N) :f m(©)d" O
L(O)>)\

* Can then write evidence integral as:
1
B / £(X)dX,
0

* Monotonically decreasing function of X

* Draw N “live points” from prior, at each iteration replace the
lowest likelihood samples with higher likelihood samples, repeat
until prior volume has been traversed




Differential evolution: Diver

* Optimisation algorithm, good for multimodal posteriors in high dimensional spaces

* A simple explanation is as follows:

1) Start with a random selection of points in the parameter space (called “vectors”)

2) Mutate vectors by e.g. picking three random vectors and making: (V = “donor vector”)
V,=X,1+ F(X,5 — X,3)

3) Crossover the donor vectors and original vectors by making trial vectors U that have a
random selection of components from the original vectors and the donor vectors

4) Select the vectors by computing the likelihood for the original vectors and their associated
trial vectors, and choosing the highest likelihood vector for the next generation

* See ScannerBit paper for full details of GAMBIT implementation



Scanner comparisons

* GAMBIT allows the scanner to be swapped by changing one line in a yaml file
* This offers a unique test bed for comparison of scanning algorithms
* Have compared algorithms on a non-trivial physics example: scalar singlet DM

1 1 1 1
L= 5;@52 + §AhSSZ|H|2 + ZASS4 + 50u50"S

 Constraints from direct and indirect DM detection experiments, LHC Higgs invisible width
searches, relic density upper bound plus theoretical upper bound on the Higgs-singlet

coupling



Singlet DM
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Parameter Values
Scalar pole mass Mmes [45,10%] GeV
Higgs portal coupling Ahs (1074, 10]

Varied in 7 and 15-dimensional scans

Electromagnetic coupling  1/a™°(my)

Strong coupling alM S(?'n, Z)
Top pole mass my
Higgs pole mass mp,
Local dark matter density Po

Varied in 15-dimensional scans

127.940(42)
0.1185(18)
173.34(2.28) GeV
125.7(1.6) GeV

0.4 —3
0.470%5 GeVem

Nuclear matrix el. (strange) Os
Nuclear matrix el. (up + down) oy
Fermi coupling x 10° Gps
Down quark mass my'5(2GeV)
Up quark mass mMS (2GeV)
Strange quark mass mM (2 GeV)
Charm quark mass mM S(?'n.f_._)
Bottom quark mass mMS (my)

43(24) MeV
58(27) MeV
1.1663787(18)
4.80(96) MeV
2.30(46) MeV
95(15) MeV
1.275(75) GeV
4.18(9) GeV




Scanner performance vs number of dimensions
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Diver: 1P = 20000, convthresh = 1073

MultiNest: n1ive = 20000, tol = 10-3

T-Walk: chain_number = number of MPI processes +
Ngim + 1, tol = sgrtk — 1 = 0.05

GreAT: nTrials = 2000, nTrialsList = Nygj, + 1
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eal time vs number of likelihood evaluations

e T-Walk and Multinest are less efficient (per likelihood
evaluation) than GreAT and Diver for large dimensional
problems

* There are several reasons (e.g. ellipsoidal decomposition in
Multinest, chain advancement calculations in T-Walk, MPI
bottlenecks, etc)



Posterior mapping: 15D scan using GreAT
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* Yikes! Validates assertion that MCMC algorithms do not cope well with multimodal

posteriors?



Posterior mapping: 15D scan using T-Walk

GAMBIT 1.0 GAMBIT 100 GAMBIT L
[

~<

&
T-Walk T-Walk
chain number: 512 chain number: 256
tol: 0.01
Marg. posterior

= P 1o %] . g % _ i X J
2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5
log,, (ms/GeV) log,,(ms/GeV) log,,(ms/GeV) log, ,(ims/GeV)

* The best scan here was the best posterior obtained, taking 9nh in total

* Poorly converged scans find all modes, but don't get relative weight correct (and don't
map the posterior smoothly)

<R (g Anpqeqord aarpepay
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Posterior mapping: 15D scan using Multinest

2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.9 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5
logyo(ms/GeV) logp(ms/GeV) log g (ms/GeV) logq(ms /GeV)

Scans with too few live points or too high a tolerance do not find all modes
The best scan here took > 21h, and is not as smooth as the T-Walk results

Multinest also erroneously smooths sharp features due to its ellipsoidal sampling method

ATTRIOY

Lpqueqeqoad a.



Sampling: executive summary

* Quick version: if you are a frequentist, use Diver. If you are a Bayesian, use T-Walk or
Multinest.

* Longer version: Different algorithms have different quirks, can exploit this to gain insights.
e.g. use T-Walk to find modes, then focus Multinest scans on those modes

* Using different algorithms with GAMBIT is both beneficial and easy!



Machine learning in GAMBIT

* GAMBIT explorations of large spaces require hundreds of millions of likelihood
evaluations

* Shaving seconds from a slow likelihood evaluation can have a profound impact on the
CPU hours required for a convergent fit

* Our slowest likelinood by far is the LHC sparticle search likelihood, the bottleneck being
Pythia MC event generation

* Interpolation of a pre-simulated grid of likelihoods is a classic solution to this problem

* Downside is that this must be repeated for any physics model of interest



Machine learning for interpolation (CMSSM)

Buckley, Shilton, MJW,
Comput.Phys.Commun. 183

 Showed 5 years back that ML-based regression (2012) 960-970

. 20.25_
works in a 4D CMSSM (SVM or BNN) - f
* Interpolated the simulated event yield in the ATLAS A
0 lepton analysis, and reproduced the exclusion limit e
using the ML output N
. u_‘"‘on‘ls""ul1""u.l15""ulz"'L‘lg.ezs
° Slnce then: SUSY_AI, SCYNet + ?? > 1000F >1000
% 900% gE‘ogoo;

m, ,/GeV m,,/GeV



Interpolation of SUSY NLO cross-sections

* For speed, our current GAMBIT SUSY scans use the LO+LL cross-section from Pythia
(already have this “for free”)

A ML-based interpolation of NLO cross-sections was meant to be in the first release

Progress is being made for forthcoming GAMBIT releases

In future, can also use SUSY Al as a “fast reject” system

Note: GAMBIT samples are public, and can be used to test and hone SUSY-AI
performance



Future applications: replacing Pythia for relevant cases

* Pythia is only satisfactory if tree-level diagrams give you most of the answer

* NLO effects substantially modify the kinematics for e.g. monojet searches (see e.qg.
Buckley, Feld, Goncalves, Phys.Rev. D91 (2015) 015017)

* Even in SUSY, the acceptance for models with compressed specitra is highly dependent
on the initial state radiation model used, and Pythia is deficient relative to e.g. Madgraph
with explicit radiation of extra partons

* Can we write a code that contain interpolated yields for interesting cases? e.g. DM
simplified models? Compressed SUSY EW sector? These yields could be reweighted
depending on the couplings in the model.



Summary

GAMBIT is an open source, public code for global statistical fits of new physics models

It has so far proven very versatile for WIMP and non-WIMP dark matter physics, and we
have an active physics programme for studies of new models

ML can clearly have a profound impact on our total likelihood evaluation time (on a
model-by-model basis)

Reduced calculation times = more physics quicker!
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