
Fast Forecasting for 
Counting Experiments

T. D. P. Edwards and C. Weniger

1712.05401

1704.05458

https://github.com/cweniger/swordfish

1
Fast forecasting for counting experiments - 16/01/18 Thomas D. P. Edwards

https://arxiv.org/abs/1712.05401
https://arxiv.org/abs/1704.05458
https://github.com/cweniger/swordfish


Typical Dark Matter Researcher Workflow
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Overview
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Equivalent counts

Parameter space Visualization 

Information flux
Fisher information
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1. What are equivalent counts 
2. Accounting for systematics

1. Definition 
2. Experimental design

1. Equal geodesic distance contours 
2. Streamline plotting



Fisher Information Matrix
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• The Fisher Informa0on is a descrip0on of the curvature of the likelihood 
• Curvature of the likelihood surface gives us a descrip0on of the variance 
• The Cramér-Rao bound is based on the Fisher informa0on matrix, which 

quan0fies how ‘sharply peaked’ the likelihood func0on describing the 
observa0onal data is around its maximum value  

• Bound is ‘asympto0cally efficient’ when the bound is saturated in the 
large sample limit 



Equivalent Counts
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Logic: 
• Signal to Noise of events in a single bin example tells us about the significance of 

the signal  
• Extend same technique to mul0-bin case 
• Not all signal events sta0s0cally contribute if they are drowned out by large 

backgrounds 
• Convenient to define significant signal and background events using the FIM
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• Maximum deviations from coverage corrected Monte Carlos up to 40%
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Information Flux
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• It is possible to include an additional term to 
the likelihood that describes background 
correlated systematics. In addition we can 
look how the information is distributed over 
a binned variable, we call this object the 
Effective Fisher information flux 

• The diagonal part of the 
Fisher information flux 
corresponds to the square 
of the SNR of component 
i, and the non-diagonal 
parts provide information 
about the degeneracy of 
the components pairs (i, j) 
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Increasing Exposure

= High Information = Low Information

Dark Matter 
Halo

Background - 
assumed 10% 
error with a 10 

degree 
correlation 

length



Visualisation
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Treat the Fisher Information 
Matrix as a local metric on 
the space of parameters

Equal Geodesic Confidence Contours

Streamline Density

d2✓i
ds2

+
1

2
I�1
ij

✓
@Ilj
@✓k

+
@Ikj
@✓l

� @Ikl
@✓j

◆
d✓k
ds

d✓l
ds

= 0

• The distance between two parallel streamlines corresponds approximately 
to 1σ in the direction perpendicular to the streamlines. 

•  The latter condition is realized by adding or removing lines as necessary.

• Trace geodesics in different directions and connect the curves 
• Matches very accurately with traditional confidence contours



CTA and Xenon1T
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Replicated analysis from 
Silverwood et al. Simplified 1-D Xenon1T projection

https://arxiv.org/abs/1408.4131


Swordfish
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Counting Experiment
S(✓): Signal
B : Background
K : Bkg. Covariance
E : Exposure

Fisher Information Matrix
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Tensor field visualization Confidence Contours
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= C. Weniger’s talk (yesterday)

Physics that you need to worry about



Thanks!
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